Influence of Manila clam aquaculture on rates and partitioning of organic carbon oxidation in sediment of Keunso Bay, Yellow Sea SCIE SCOPUS

Cited 5 time in WEB OF SCIENCE Cited 6 time in Scopus
Title
Influence of Manila clam aquaculture on rates and partitioning of organic carbon oxidation in sediment of Keunso Bay, Yellow Sea
Author(s)
Kim, Sung-Han; An, Sung-Uk; Lee, Won-Chan; Lee, Jae Seong; Hyun J.-H.
KIOST Author(s)
Kim, Sung Han(김성한)Lee, Jae Seong(이재성)
Alternative Author(s)
김성한; 이재성
Publication Year
2020-03
Abstract
We investigated the effects of Manila clam aquaculture on the rates and pathways of anaerobic organic carbon (OC) oxidation in highly bioturbated (HB) and poorly bioturbated (PB) sediment in Keunso Bay, Yellow Sea. Due to the labile organic matter supply via sediment reworking by Manila clams, the anaerobic OC oxidation rate in HB sediment (38.8 mmol m(-2) d(-1)) was similar to 1.5 times higher than that in PB sediment (26.8 mmol m(-2) d(-1)). Microbial Fe(III) reduction (FeR) dominated OC oxidation pathways in HB sediment, comprising 55 to 76% of anaerobic OC oxidation, whereas sulfate reduction (SR) was the dominant oxidation pathway in PB sediment, accounting for up to 92% of anaerobic OC oxidation. Despite higher anaerobic respiration rates at the HB site, concentrations of NH4+, PO43-, oxalate-extractable iron (Fe(II)((oxal))), and total reduced inorganic sulfur were 2 to 3 times lower in HB than in PB sediment. Conversely, the concentration of reactive Fe(III(oxal) at the HB site (2243 mmol m(-2)) exceeded that at the PB site (1127 mmol m(-2)) by a factor of 2. These results indicate that bioturbation by Manila clams enhances the re-oxidation processes of reduced metabolites in the sediment, thereby prohibiting SR and promoting FeR. Overall, the results suggest that aquaculture activities of Manila clams shift the dominant OC oxidation pathways in sediment from SR to FeR, which generates relatively oxidized and less sulfidic environments.
ISSN
1869-215X
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/38732
DOI
10.3354/aei00352
Bibliographic Citation
AQUACULTURE ENVIRONMENT INTERACTIONS, v.12, pp.91 - 103, 2020
Publisher
INTER-RESEARCH
Keywords
Aquaculture; Manila clam; Bioturbation; Organic carbon oxidation; Sulfate reduction; Iron reduction
Type
Article
Language
English
Document Type
Article
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse