Ocean Observations to Improve Our Understanding, Modeling, and Forecasting of Subseasonal-to-Seasonal Variability SCIE SCOPUS

Cited 10 time in WEB OF SCIENCE Cited 7 time in Scopus
Title
Ocean Observations to Improve Our Understanding, Modeling, and Forecasting of Subseasonal-to-Seasonal Variability
Author(s)
Subramanian, Aneesh C.; Balmaseda, Magdalena A.; Centurioni, Luca; Chattopadhyay, Rajib; Cornuelle, Bruce D.; DeMott, Charlotte; Flatau, Maria; Fujii, Yosuke; Giglio, Donata; Gille, Sarah T.; Hamill, Thomas M.; Hendon, Harry; Hoteit, Ibrahim; Kumar, Arun; Lee, Jae-Hak; Lucas, Andrew J.; Mahadevan, Amala; Matsueda, Mio; Nam, SungHyun; Paturi, Shastri; Penny, Stephen G.; Rydbeck, Adam; Sun, Rui; Takaya, Yuhei; Tandon, Amit; Todd, Robert E.; Vitart, Frederic; Yuan, Dongliang; Zhang, Chidong
KIOST Author(s)
Lee, Jae Hak(이재학)
Publication Year
2019-08
Abstract
Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts.
ISSN
2296-7745
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/553
DOI
10.3389/fmars.2019.00427
Bibliographic Citation
FRONTIERS IN MARINE SCIENCE, v.6, 2019
Publisher
FRONTIERS MEDIA SA
Keywords
subseasonal; seasonal; predictions; air-sea interaction; satellite; Argo; gliders; drifters
Type
Article
Language
English
Document Type
Review
Publisher
FRONTIERS MEDIA SA
Related Researcher
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse