Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects? SCIE SCOPUS

Cited 0 time in WEB OF SCIENCE Cited 0 time in Scopus
Title
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Author(s)
Lee, Seoung Soo; Choi, Jinho; Kim, Go Un; Ha, Kyung-Ja; Seo, Kyong-Hwan; Jung, Chang Hoon; Um, Junshik; Zheng, Youtong; Guo, Jianping; Song, Sang-Keun; Lee, Yun Gon; Utsumi, Nobuyuki
KIOST Author(s)
Kim, Go Un(김고운)
Alternative Author(s)
김고운
Publication Year
2022-07
Abstract
This study examines the role played by aerosols which act as cloud condensation nuclei (CCN) in the development of clouds and precipitation in two metropolitan areas in East Asia that have experienced substantial increases in aerosol concentrations over the last decades. These two areas are the Seoul and Beijing areas and the examination was done by performing simulations using the Advanced Research Weather Research and Forecasting model as a cloud system resolving model. The CCN are advected from the continent to the Seoul area and this increases aerosol concentrations in the Seoul area. These increased CCN concentrations induce the enhancement of condensation that in turn induces the enhancement of deposition and precipitation amount in a system of less deep convective clouds as compared to those in the Beijing area. In a system of deeper clouds in the Beijing area, increasing CCN concentrations also enhance condensation but reduce deposition. This leads to negligible CCN-induced changes in the precipitation amount. Also, in the system there is a competition for convective energy among clouds with different condensation and updrafts. This competition results in different responses to increasing CCN concentrations among different types of precipitation, which are light, medium and heavy precipitation in the Beijing area. The CCN-induced changes in freezing play a negligible role in CCN-precipitation interactions as compared to the role played by CCN-induced changes in condensation and deposition in both areas.
ISSN
1680-7316
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/43094
DOI
10.5194/acp-22-9059-2022
Bibliographic Citation
Atmospheric Chemistry and Physics, v.22, no.13, pp.9059 - 9081, 2022
Publisher
European Geophysical Society
Type
Article
Language
English
Document Type
Article
Publisher
European Geophysical Society
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse