Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters SCIE SCOPUS

DC Field Value Language
dc.contributor.author Park, Si Jae -
dc.contributor.author Kim, Tae Wan -
dc.contributor.author Kim, Min Kyung -
dc.contributor.author Lee, Sang Yup -
dc.contributor.author Lim, Sung-Chul -
dc.date.accessioned 2020-04-20T06:40:23Z -
dc.date.available 2020-04-20T06:40:23Z -
dc.date.created 2020-01-28 -
dc.date.issued 2012-11 -
dc.identifier.issn 0734-9750 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/3429 -
dc.description.abstract Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties. (c) 2011 Elsevier Inc. All rights reserved. -
dc.description.uri 1 -
dc.language English -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.subject RECOMBINANT ESCHERICHIA-COLI -
dc.subject PROPIONATE COA-TRANSFERASE -
dc.subject LA-BASED POLYESTERS -
dc.subject IN-VITRO EVOLUTION -
dc.subject POLYLACTIC ACID -
dc.subject PHA SYNTHASE -
dc.subject RALSTONIA-EUTROPHA -
dc.subject SATURATION MUTAGENESIS -
dc.subject BIOSYNTHESIS GENES -
dc.subject MOLECULAR-WEIGHT -
dc.title Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters -
dc.type Article -
dc.citation.endPage 1206 -
dc.citation.startPage 1196 -
dc.citation.title BIOTECHNOLOGY ADVANCES -
dc.citation.volume 30 -
dc.citation.number 6 -
dc.contributor.alternativeName 김태완 -
dc.identifier.bibliographicCitation BIOTECHNOLOGY ADVANCES, v.30, no.6, pp.1196 - 1206 -
dc.identifier.doi 10.1016/j.biotechadv.2011.11.007 -
dc.identifier.scopusid 2-s2.0-84867703155 -
dc.identifier.wosid 000311859100002 -
dc.type.docType Review -
dc.description.journalClass 1 -
dc.subject.keywordPlus RECOMBINANT ESCHERICHIA-COLI -
dc.subject.keywordPlus PROPIONATE COA-TRANSFERASE -
dc.subject.keywordPlus LA-BASED POLYESTERS -
dc.subject.keywordPlus IN-VITRO EVOLUTION -
dc.subject.keywordPlus POLYLACTIC ACID -
dc.subject.keywordPlus PHA SYNTHASE -
dc.subject.keywordPlus RALSTONIA-EUTROPHA -
dc.subject.keywordPlus SATURATION MUTAGENESIS -
dc.subject.keywordPlus BIOSYNTHESIS GENES -
dc.subject.keywordPlus MOLECULAR-WEIGHT -
dc.subject.keywordAuthor PHA -
dc.subject.keywordAuthor PLA -
dc.subject.keywordAuthor PHA synthase -
dc.subject.keywordAuthor PLA copolymer -
dc.subject.keywordAuthor 2-hydroxyacid containing PHA -
dc.relation.journalWebOfScienceCategory Biotechnology & Applied Microbiology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Biotechnology & Applied Microbiology -
Appears in Collections:
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse