Sargachromanol G Isolated from Sargassum siliquastrum Inhibits Inflammatory Activity in RAW 264.7 Cells

Title
Sargachromanol G Isolated from Sargassum siliquastrum Inhibits Inflammatory Activity in RAW 264.7 Cells
Author(s)
김민선; 예보람; 장지이; 이아름; 윤원종; 허수진
KIOST Author(s)
Heo, Soo Jin(허수진)
Publication Year
2014-06-20
Abstract
A study on the anti-inflammatory activity of brown alga Sargassum siliquastrum led to the isolation of sargachromanol G (SG). In this study, the anti-inflammatory effect and the action mechanism of SG have been investigated in murine macrophage cell line RAW 264.7. SG dosedependently inhibited the production of inflammatory markers [nitric oxide (NO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2)] and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6] induced by LPS treatment. To further elucidate the mechanism of this inhibitory effect of SG, we studied LPSinduced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinases (MAPKs) phosphorylation. SG inhibited the phosphorylation IκB-α and NF-κB (p65 and p50) and MAPK (ERK1/2, JNK, and p38) in a dose dependent manner. These results suggest that the anti-inflammatory activity of SG results from its modulation of pro-inflammatory cytokines and mediators via the suppression of NF-κB activation and MAPK phosphorylation.hage cell line RAW 264.7. SG dosedependently inhibited the production of inflammatory markers [nitric oxide (NO), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2)] and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6] induced by LPS treatment. To further elucidate the mechanism of this inhibitory effect of SG, we studied LPSinduced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinases (MAPKs) phosphorylation. SG inhibited the phosphorylation IκB-α and NF-κB (p65 and p50) and MAPK (ERK1/2, JNK, and p38) in a dose dependent manner. These results suggest that the anti-inflammatory activity of SG results from its modulation of pro-inflammatory cytokines and mediators via the suppression of NF-κB activation and MAPK phosphorylation.
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/26152
Bibliographic Citation
KSABC, pp.215, 2014
Publisher
한국응용생명화학회
Type
Conference
Language
English
Publisher
한국응용생명화학회
Related Researcher
Research Interests

Marine Biotechnology,Marine Natural Products,Bioactivities,해양생물공학,해양천연물학,생리활성

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse