Bayesian Modeling of Coastal Marine Environment for Sustainable Coastal Development

Title
Bayesian Modeling of Coastal Marine Environment for Sustainable Coastal Development
Author(s)
김진아; 박진아; 김기응
KIOST Author(s)
Kim, Jinah(김진아)
Alternative Author(s)
김진아
Publication Year
2015-09-14
Abstract
To support sustainable coastal development, we propose a Bayesian method for modelingcoastal marine environments and apply the method to the Saemangeum Coast locatedalong the mid‐ western coast of Korea. For the purpose of economic growth, coastaldevelopment has been conducted by the construction of an approximately 33‐ km‐ long seadyke, reclaiming about 40 Kha of land since 1991. Originally, the Saemangeum Coast had awell‐ developed and large area of tidal flats, comprising two estuaries in addition to a chainof small islands. However, a large change in water movement and a reduction of tidalcurrents occurred following construction of the sea dyke. Severe environmental problemshave occurred over time, such as the intensification of vertical stratification, the occurrenceof red tide and oxygen depletion, coastal erosion/deposition, and the death and reductionof fishes. To monitor the environmental changes, continuous spatio‐ temporal oceanobservation has been performed periodically since 2002 at several sites using observationplatforms, such as the deployment of buoys, installation of towers with oceanographic andmeteorological sensors, ship surveys, and water sampling. Using the accumulatedobservational data, we developed Bayesian modeling to understand, assess, and predictcoastal marine environment and its changes, quantitatively. Furthermore, Bayesianinferen growth, coastaldevelopment has been conducted by the construction of an approximately 33‐ km‐ long seadyke, reclaiming about 40 Kha of land since 1991. Originally, the Saemangeum Coast had awell‐ developed and large area of tidal flats, comprising two estuaries in addition to a chainof small islands. However, a large change in water movement and a reduction of tidalcurrents occurred following construction of the sea dyke. Severe environmental problemshave occurred over time, such as the intensification of vertical stratification, the occurrenceof red tide and oxygen depletion, coastal erosion/deposition, and the death and reductionof fishes. To monitor the environmental changes, continuous spatio‐ temporal oceanobservation has been performed periodically since 2002 at several sites using observationplatforms, such as the deployment of buoys, installation of towers with oceanographic andmeteorological sensors, ship surveys, and water sampling. Using the accumulatedobservational data, we developed Bayesian modeling to understand, assess, and predictcoastal marine environment and its changes, quantitatively. Furthermore, Bayesianinferen
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/25308
Bibliographic Citation
5th World Sustainability Forum, pp.163, 2015
Publisher
Environmental
Type
Conference
Language
English
Publisher
Environmental
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse