Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1 SCIE SCOPUS

DC Field Value Language
dc.contributor.author Moon, Yoon-Jung -
dc.contributor.author Kwon, Joseph -
dc.contributor.author Yun, Sung-Ho -
dc.contributor.author Lim, Hye Li -
dc.contributor.author Kim, Jonghyun -
dc.contributor.author Kim, Soo Jung -
dc.contributor.author Kang, Sung Gyun -
dc.contributor.author Lee, Jung-Hyun -
dc.contributor.author Kim, Seung Il -
dc.contributor.author Chung, Young-Ho -
dc.date.accessioned 2020-04-20T03:40:27Z -
dc.date.available 2020-04-20T03:40:27Z -
dc.date.created 2020-01-28 -
dc.date.issued 2015-05 -
dc.identifier.issn 1422-0067 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/2493 -
dc.description.abstract The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H-2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H-2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe-S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H-2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments. -
dc.description.uri 1 -
dc.language English -
dc.publisher MDPI -
dc.subject COMPLETE GENOME SEQUENCE -
dc.subject DNA MICROARRAY ANALYSIS -
dc.subject PYROCOCCUS-FURIOSUS -
dc.subject ELEMENTAL SULFUR -
dc.subject DIGERANYLGERANYLGLYCEROPHOSPHOLIPID REDUCTASE -
dc.subject SULFIDE DEHYDROGENASE -
dc.subject MEVALONATE KINASE -
dc.subject MEMBRANE-LIPIDS -
dc.subject ABC TRANSPORTER -
dc.subject H-2 PRODUCTION -
dc.title Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1 -
dc.type Article -
dc.citation.endPage 9195 -
dc.citation.startPage 9167 -
dc.citation.title INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES -
dc.citation.volume 16 -
dc.citation.number 5 -
dc.contributor.alternativeName 강성균 -
dc.contributor.alternativeName 이정현 -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.16, no.5, pp.9167 - 9195 -
dc.identifier.doi 10.3390/ijms16059167 -
dc.identifier.scopusid 2-s2.0-84928395756 -
dc.identifier.wosid 000356241400008 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.subject.keywordPlus COMPLETE GENOME SEQUENCE -
dc.subject.keywordPlus DNA MICROARRAY ANALYSIS -
dc.subject.keywordPlus PYROCOCCUS-FURIOSUS -
dc.subject.keywordPlus ELEMENTAL SULFUR -
dc.subject.keywordPlus DIGERANYLGERANYLGLYCEROPHOSPHOLIPID REDUCTASE -
dc.subject.keywordPlus SULFIDE DEHYDROGENASE -
dc.subject.keywordPlus MEVALONATE KINASE -
dc.subject.keywordPlus MEMBRANE-LIPIDS -
dc.subject.keywordPlus ABC TRANSPORTER -
dc.subject.keywordPlus H-2 PRODUCTION -
dc.subject.keywordAuthor Thermococcus onnurineus NA1 -
dc.subject.keywordAuthor nano-UPLC-MSE -
dc.subject.keywordAuthor comparative proteomics -
dc.subject.keywordAuthor elemental sulfur -
dc.subject.keywordAuthor H2S -
dc.subject.keywordAuthor hydrogenases -
dc.subject.keywordAuthor sulfur metabolism -
dc.subject.keywordAuthor oxidative stress defense -
dc.relation.journalWebOfScienceCategory Biochemistry & Molecular Biology -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Biochemistry & Molecular Biology -
dc.relation.journalResearchArea Chemistry -
Appears in Collections:
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse