Improved Detection of Macroalgal Bloom from Sentinel-1 Images Through Ship Masking

Title
Improved Detection of Macroalgal Bloom from Sentinel-1 Images Through Ship Masking
Author(s)
Rashid; 양찬수
KIOST Author(s)
Yang, Chan Su(양찬수)
Publication Year
2019-06-18
Abstract
Macroalgal bloom (MAB) is a global issue which affects the life and economy of the people in coastal regions. In
2008 world largest MAB occurred in the Yellow Sea nearby Qingdao occupying very large area, and was piled up in huge amount which incurred a lot of expense and labour for the cleaning up process. Afterwards, it is being occurred there every year with successive growth and coverage. Therefore, it became necessary to monitor MABs continuously from their generation period to dissipation for taking remedial measures in time. However, monitoring MABs by direct observation or sample collection over the wide areas of any sea is not feasible
considering effort, time and money. Therefore, numerous researchworks have been done for the detection of macroalgal blooms in the seas. However, most of those were done by using different optical satellites which are frequently hindered by weather hazards like cloud, sea fog, storm, etc., especially in the Yellow Sea. Moreover, being optical in nature those satellites also lack data during night. These drawbacks can be minimized by using Synthetic Aperture Radar (SAR) which can penetrate these weather hazards, and being active type of remote sensing can be also be operated at night. However, there are not much research works for developing methods or
algorithms for MAB detection from SAR images. Considering these here we have applied gray-level co-occurrence matrix (GLCM)
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/22578
Bibliographic Citation
OCEANS2019, pp.1 - 4, 2019
Publisher
IEEE Ocean Engineering Society
Type
Conference
Language
English
Publisher
IEEE Ocean Engineering Society
Related Researcher
Research Interests

Satellite Oceanography,Marine Safety & Security,Remote Sensing,위성해양학,해양 안전 및 보안,원격탐사

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse