북극해에서 입자추적 방법을 이용한 유빙 추적 연구 KCI

Title
북극해에서 입자추적 방법을 이용한 유빙 추적 연구
Alternative Title
Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean
Author(s)
박광섭; 김현철; 이태희; 손영백
KIOST Author(s)
Park, Gwang Seob(박광섭)Lee, Taehee(이태희)Son, Young Baek(손영백)
Publication Year
2018-12
Abstract
In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking.
Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

본 연구는 북극해에 분포하는 유빙의 움직임을 이해하기 위해 현장관측 자료와 입자 추적 방법을 사용하여 분포 및 이동경향을 분석하였다. 북극해에서 유빙의 움직임은 NOAA(National Oceanic and Atmospheric Administration)에서 제공하는 ITP(Ice-Tethered Profiler)의 자료 중에서 2009년부터 2018년 자료를 이용했다. 유빙의 유동은 각 연도별로 분류하고 각각의 ITP 자료를 이용하여 위치 및 속도를 분석하였다. 입자 추적은 HYCOM(Hybrid Coordinate Ocean Model)과 ECMWF(European Centre for Medium-Range Weather Forecasts)에서 제공하는 일별 해류 및 바람 자료를 사용하여 2009년부터 2018년까지의 유빙의 움직임을 모의하였다. 북극해 전역에서 유빙의 이동경향을 분석하기 위해서 현장관측 자료인 ITP자료를 입력 자료로 이용하여 북극해에서 해류와 바람과의 관계식을 계산하여 라그랑지안 입자 추적을 수행하였다.
입자 추적 시뮬레이션은 해류에 의한, 그리고 해류와 바람에 의한 영향을 고려한 두 종류의 실험을 수행하였고, 대부분의 입자는 해류와 바람의 영향을 고려한 경우에 현장관측 자료와 동일하게 재현되었다. 북극해에서 유빙의 움직임은 바람의 영향을 고려한 관계식을 이용하여 재현되었고, 이를 이용하여 특정 연도의 유빙의 이동경향을 분석하였다. 2010년의 경우 Arctic Oscillation Index(AOI)는 음의 해로 입자들은 보퍼트 환류(Beaufort Gyre)를 따라 명확하게 움직임을 보이고, 극점 인근에서는 상대적으로 더 빠른 속도를 나타낸다. 반면에 2017년의 경우 AOI는 양의 해로 대부분의 입자들은 Gyre에 크게 영향을 받지 않는 움직임을 보이며 보퍼트 해 (Beaufort Sea) 인근에서 나타나는 이동속도 또한 상대적으로 감소하였고, 극점에서의 이동속도도 감소했다. 2010년과 2017년의 계절적 특징은 2010년도의 유빙의 이동속도는 동계(0.22 m/s)에 증가되고 춘계(0.16 m/s)에 감소되며, 2017년의 경우 하계(0.22 m/s)에 증가되고 춘계(0.13 m/s)에 감소되었다. 결과적으로 입자추적 방법은 제한된 현장관측 자료를 대신하여 북극해에서 유빙의 분포 및 이동경향을 이해할 수 있는 방법으로 위성자료와 연계하여 장기적인 유빙의 탐지 및 이동경향을 이해하는 유용한 방법이 될 것이다.
ISSN
1225-6161
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/781
Bibliographic Citation
대한원격탐사학회지, v.34, no.6, pp.1299 - 1310, 2018
Publisher
대한원격탐사학회
Keywords
The Arctic Ocean; Drifting Ice; ITP; Particle Tracking
Type
Article
Language
Korean
Publisher
대한원격탐사학회
Related Researcher
Research Interests

Marine Geochemistry,Marine Environment,Oceanography,해양지화학,해양환경,해양학

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse