Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes SCIE SCOPUS

DC Field Value Language
dc.contributor.author Lee, Seong Hyuk -
dc.contributor.author Kim, Min-Sik -
dc.contributor.author Kang, Sung Gyun -
dc.contributor.author Lee, Hyun Sook -
dc.date.accessioned 2020-04-16T08:15:21Z -
dc.date.available 2020-04-16T08:15:21Z -
dc.date.created 2020-02-19 -
dc.date.issued 2019-02-08 -
dc.identifier.issn 1754-6834 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/678 -
dc.description.abstract BackgroundThe production of biohydrogen (H-2) as a promising future fuel in anaerobic hyperthermophiles has attracted great attention because H-2 formation is more thermodynamically feasible at elevated temperatures and fewer undesired side products are produced. However, these microbes require anoxic culture conditions for growth and H-2 production, thereby necessitating costly and time-consuming physical or chemical methods to remove molecular oxygen (O-2). Therefore, the development of an O-2-tolerant strain would be useful for industrial applications.ResultsIn this study, we found that the overexpression of frhAGB-encoding hydrogenase genes in Thermococcus onnurineus NA1, an obligate anaerobic archaeon and robust H-2 producer, enhanced O-2 tolerance. When the recombinant FO strain was exposed to levels of O-2 up to 20% in the headspace of a sealed bottle, it showed significant growth. Whole transcriptome analysis of the FO strain revealed that several genes involved in the stress response such as chaperonin subunit, universal stress protein, peroxiredoxin, and alkyl hydroperoxide reductase subunit C, were significantly up-regulated. The O-2 tolerance of the FO strain enabled it to grow on formate and produce H-2 under oxic conditions, where prior O-2-removing steps were omitted, such as the addition of reducing agent Na2S, autoclaving, and inert gas purging.ConclusionsVia the overexpression of frhAGB genes, the obligate anaerobic archaeon T. onnurineus NA1 gained the ability to overcome the inhibitory effect of O-2. This O-2-tolerant property of the strain may provide another advantage to this hyperthermophilic archaeon as a platform for biofuel H-2 production. -
dc.description.uri 1 -
dc.language English -
dc.publisher BMC -
dc.subject DEPENDENT H-2 PRODUCTION -
dc.subject HYPERTHERMOPHILIC ARCHAEON -
dc.subject DESULFOVIBRIO-VULGARIS -
dc.subject THERMOPHILIC BACTERIA -
dc.subject FORMATE -
dc.subject CULTIVATION -
dc.subject PROTECTION -
dc.subject DIVERSITY -
dc.subject MICROBES -
dc.subject CO2 -
dc.title Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes -
dc.type Article -
dc.citation.title BIOTECHNOLOGY FOR BIOFUELS -
dc.citation.volume 12 -
dc.contributor.alternativeName 이성혁 -
dc.contributor.alternativeName 강성균 -
dc.contributor.alternativeName 이현숙 -
dc.identifier.bibliographicCitation BIOTECHNOLOGY FOR BIOFUELS, v.12 -
dc.identifier.doi 10.1186/s13068-019-1365-3 -
dc.identifier.scopusid 2-s2.0-85061386173 -
dc.identifier.wosid 000458204700001 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.subject.keywordPlus DEPENDENT H-2 PRODUCTION -
dc.subject.keywordPlus HYPERTHERMOPHILIC ARCHAEON -
dc.subject.keywordPlus DESULFOVIBRIO-VULGARIS -
dc.subject.keywordPlus THERMOPHILIC BACTERIA -
dc.subject.keywordPlus FORMATE -
dc.subject.keywordPlus CULTIVATION -
dc.subject.keywordPlus PROTECTION -
dc.subject.keywordPlus DIVERSITY -
dc.subject.keywordPlus MICROBES -
dc.subject.keywordPlus CO2 -
dc.subject.keywordAuthor frhAGB-encoding hydrogenase -
dc.subject.keywordAuthor Obligate anaerobe -
dc.subject.keywordAuthor Thermococcus onnurineus NA1 -
dc.subject.keywordAuthor O-2 tolerance -
dc.subject.keywordAuthor Biohydrogen -
dc.relation.journalWebOfScienceCategory Biotechnology & Applied Microbiology -
dc.relation.journalWebOfScienceCategory Energy & Fuels -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Biotechnology & Applied Microbiology -
dc.relation.journalResearchArea Energy & Fuels -
Appears in Collections:
Marine Resources & Environment Research Division > Marine Biotechnology &Bioresource Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse