Chronological, Petrogenetic, and Tectonic Significance of Paleo- proterozoic Continental Crust within the North China Craton during the Global Tectono-Magmatic Lull SCIE SCOPUS

Cited 0 time in WEB OF SCIENCE Cited 0 time in Scopus
Title
Chronological, Petrogenetic, and Tectonic Significance of Paleo- proterozoic Continental Crust within the North China Craton during the Global Tectono-Magmatic Lull
Author(s)
Liu, Heng; Liu, Lei; Zhang, Dexian; Moon, Inkyeong; Santosh, M.; Zhou, Yanyan; Hu, Tianyang; Kang, Shisheng
KIOST Author(s)
Moon, Inkyeong(문인경)
Alternative Author(s)
문인경
Publication Year
2024-03
Abstract
The 2.45–2.20 Ga period during the early Paleoproterozoic era is considered to have witnessed a global “Tectono-Magmatic Lull (TML)” and thus marks a relatively quiescent period. Our study unveils a 2.45–2.20 Ga magmatic suite from the Xiong’ershan area in the southern North China Craton, offering some key constraints on localized active tectonics during the TML. Zircon U-Pb dating shows Paleoproterozoic ages for the meta-basalt (2.31, 2.28 Ga), Na-rich meta-andesite (~2.33 Ga), tonalite-trondhjemite-granodiorite (TTG) gneisses (2.36, 2.30 Ga), K-rich granodiorite (~2.29 Ga), and monzogranite (2.33, 2.27 Ga). The meta-basalts geochemically and petrographically belong to calc-alkaline basalts and show distinctive Nb, Ta, and Ti contents and primitive mantle normalized patterns from different places in the Xiong’ershan area. Combined with their enriched εHf(t) values, the magmas were derived from subduction-related enriched mantle sources within a convergent plate boundary. The meta-andesites display high MgO content (average 4.5 wt%) and Mg# (44–57), strongly fractionated rare-earth pattern, calc-alkaline affinity, and negative Nb, Ta, and Ti anomalies. The TTG gneisses are of high SiO2 type (>62 wt%), high (La/Yb)N (17.5, 39.2), and Sr/Y (50.2, 104.3) and mostly display positive Eu anomalies and high-pressure type. Zircons from these rocks show a relatively narrow range of δ18O isotope values (5.35‰, 6.79‰) with εHf(t) isotope characteristics (−9.3, −3.3), suggesting derivation from partial melting of a thickened mafic lower crust. The youngest K-rich granodiorite and monzogranite show high K2O/Na2O ratios (0.65, 2.45). Variable molar ratio Al2O3/(CaO+Na2O+K2O) (A/CNK) and low zircon εHf(t) values suggest that the K-rich granitoids formed from the partial melting of different levels of crust. The presence of meta-basalt to andesite assemblages and diverse intermediate to felsic magmatic rocks implies magmatic activity within a convergent plate boundary tectonic environment with potential influence from plume-triggered extensional processes, supported by evidence of slab rollback and upwelling of mantle material.
ISSN
1941-8264
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/45561
DOI
10.2113/2024/lithosphere_2023_234
Bibliographic Citation
Lithosphere, v.2024, no.1, 2024
Publisher
Geologica Society of America
Type
Article
Language
English
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse