Covariance of Marine Nucleocytoplasmic Large DNA Viruses with Eukaryotic Plankton Communities in the Sub-Arctic Kongsfjorden Ecosystem: A Metagenomic Analysis of Marine Microbial Ecosystems

Title
Covariance of Marine Nucleocytoplasmic Large DNA Viruses with Eukaryotic Plankton Communities in the Sub-Arctic Kongsfjorden Ecosystem: A Metagenomic Analysis of Marine Microbial Ecosystems
Author(s)
Kim, Kang Eun; Joo, Hyoung Min; Lee, Taek Kyun; Kim, Hyun Jung; Kim, Yu Jin; Kim, Bo Kyung; Ha, Sun-Yong; Jung, Seung Won
KIOST Author(s)
Kim, Kang Eun(김강은)Lee, Taek Kyun(이택견)Kim, Hyun Jung(김현정)Kim, Yu Jin(김유진)Jung, Seung Won(정승원)
Alternative Author(s)
김강은; 이택견; 김현정; 김유진; 정승원
Publication Year
2023-11-01
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) infect various marine eukaryotes. However, little is known about NCLDV diversity and their relationships with eukaryotic hosts in marine environments, the elucidation of which will advance the current understanding of marine ecosystems. This study characterises the interplay between NCLDVs and the eukaryotic plankton community (EPC) in the sub-Arctic area using metagenomics and metabarcoding to investigate NCLDVs and EPC, respectively, in the Kongsfjorden ecosystem of Svalbard (Norway) in April and June, 2018. Gyrodinium helveticum (Dinophyceae) is the most prevalent eukaryotic taxon in the EPC in April, during which time Mimiviridae (31.8%), Poxviridae (25.1%), Phycodnaviridae (14.7%) and Pandoraviridae (13.1%) predominate. However, in June, the predominant taxon is Aureococcus anophagefferens (Pelagophyceae), and the NCLDVs, Poxviridae (32.9%), Mimiviridae (29.1%), and Phycodnaviridae (18.5%) appear in higher proportions with an increase in Pelagophyceae, Bacillariophyceae, and Chlorophyta groups. Thus, differences in NCLDVs may be caused by changes in EPC composition in response to environmental changes, such as increases in water temperature and light intensity. Taken together, these findings are particularly relevant considering the anticipated impact of NCLDV-induced EPC control mechanisms on polar regions and, therefore, improves the understanding of the Sub-Arctic Kongsfjorden ecosystem.
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/44781
Bibliographic Citation
2023년도 한국해양학회 추계학술대회, 2023
Publisher
한국해양학회
Type
Conference
Language
English
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse