CO2 competes with radioactive chemicals for freshwater recovery: Hydrate-based desalination SCIE SCOPUS

DC Field Value Language
dc.contributor.author Lim, Sol Geo -
dc.contributor.author Oh, Chang Yeop -
dc.contributor.author Kim, Sun Ha -
dc.contributor.author Ra, Kongtae -
dc.contributor.author Yoon, Ji-Ho -
dc.date.accessioned 2023-10-30T02:30:00Z -
dc.date.available 2023-10-30T02:30:00Z -
dc.date.created 2023-10-30 -
dc.date.issued 2024-01 -
dc.identifier.issn 0304-3894 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/44700 -
dc.description.abstract Here, we introduce CO2 hydrate-based desalination (CHBD) technology for freshwater recovery from radioactive wastewater, for water particularly containing Cs and Sr. The hydrate equilibrium curves of CO2 hydrates shift towards lower temperature and higher pressure regions as the concentrations of CsCl and SrCl2 increase. X-ray diffraction and Raman spectroscopy measurements found that neither CsCl nor SrCl2 can affect the structure of CO2 hydrates. The high-pressure micro-differential scanning calorimetric results demonstrate that CO2 hydrates in the presence of CsCl and SrCl2 started to dissociate at lower temperatures due to the enrichment of CsCl and SrCl2 in the remaining solutions. The formation kinetics results indicate that increases in the concentrations of the radioactive chemicals lead to a decrease in the initial reaction rate and sub-cooling temperature. Solid-state nuclear magnetic resonance spectroscopy was utilized to confirm the exclusion of radioactive isotopes from solid gas hydrates. Importantly, the CHBD technology proposed in this study is applicable to radioactive wastewater containing Cs+ and Sr2+ across broad concentration ranges, spanning from a percent to hundreds of parts per million (ppm), and even sub-ppm levels, with comparable recovery efficiency. This study presents new insights into the potential of environmentally sustainable technologies to overcome the challenges posed by radioactive wastewater. © 2023 Elsevier B.V. -
dc.description.uri 1 -
dc.language English -
dc.publisher Elsevier BV -
dc.title CO2 competes with radioactive chemicals for freshwater recovery: Hydrate-based desalination -
dc.type Article -
dc.citation.title Journal of Hazardous Materials -
dc.citation.volume 462 -
dc.contributor.alternativeName 나공태 -
dc.identifier.bibliographicCitation Journal of Hazardous Materials, v.462 -
dc.identifier.doi 10.1016/j.jhazmat.2023.132812 -
dc.identifier.scopusid 2-s2.0-85174712505 -
dc.identifier.wosid 001105402800001 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.description.isOpenAccess N -
dc.subject.keywordPlus CARBON-DIOXIDE HYDRATE -
dc.subject.keywordPlus OF-THE-ART -
dc.subject.keywordPlus GAS HYDRATE -
dc.subject.keywordPlus METHANE HYDRATE -
dc.subject.keywordPlus SPECTROSCOPIC IDENTIFICATION -
dc.subject.keywordPlus THERMODYNAMIC STABILITY -
dc.subject.keywordPlus PHASE-EQUILIBRIUM -
dc.subject.keywordPlus WASTE-WATER -
dc.subject.keywordPlus DISSOCIATION -
dc.subject.keywordPlus REMOVAL -
dc.subject.keywordAuthor Carbon dioxide -
dc.subject.keywordAuthor Desalination -
dc.subject.keywordAuthor Dissociation enthalpy -
dc.subject.keywordAuthor Gas hydrate -
dc.subject.keywordAuthor Radioactive wastewater -
dc.relation.journalWebOfScienceCategory Engineering, Environmental -
dc.relation.journalWebOfScienceCategory Environmental Sciences -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalResearchArea Environmental Sciences & Ecology -
Appears in Collections:
Marine Resources & Environment Research Division > Marine Environment Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse