Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN SCIE SCOPUS

Cited 0 time in WEB OF SCIENCE Cited 1 time in Scopus
Title
Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN
Author(s)
Kim, Tae-Hee; Heo, Seong Yeong; Han, Ji Sung; Jung, Won-Kyo
KIOST Author(s)
Heo, Seong Yeong(허성영)
Alternative Author(s)
허성영
Publication Year
2023-10
Abstract
Polydeoxyribonucleotide (PDRN) is a DNA-derived drug extracted from the sperm cells of Oncorhynchus mykiss or O. keta. PDRN exhibits wound healing and anti-inflammatory activities by activating adenosine A2A receptor and salvage pathways. However, commercial PDRN products (e.g., Placentex, Rejuvenex, and HiDr) have limitations as they are exclusively extracted O. mykiss and O. keta, which are expensive and can only be used as extraction sources during a specific period when their sperm cells are activated. Therefore, this study aimed to extract PDRN from Porphyra sp. (Ps-PDRN) and investigate whether it has anti-inflammatory activity through a comparative study with commercial product. The results indicated that Ps-PDRN had an anti-inflammatory effect on Escherichia coli lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. It inhibited nitric oxide production and inducible nitric oxygen synthase protein expression by suppressing phosphorylation of p38 and ERK, without cytotoxicity. Furthermore, Ps-PDRN promoted cell proliferation and collagen production in human dermal fibroblast. In conclusion, our study confirms that Ps-PDRN exhibits both anti-inflammatory and cell proliferative effects. These results indicated that Ps-PDRN has the potential as a bioactive drug for tissue engineering.
ISSN
0263-6484
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/44492
DOI
10.1002/cbf.3840
Bibliographic Citation
Cell Biochemistry and Function, v.41, no.7, pp.889 - 897, 2023
Publisher
John Wiley & Sons Inc.
Keywords
alga; anti-inflammation; polydeoxyribonucleotides; Porphyra sp; RAW 264; 7 macrophages
Type
Article
Language
English
Document Type
Article; Early Access
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse