A Study on Anomaly Detection of Unmanned Marine Systems Using Machine Learning

DC Field Value Language
dc.contributor.author Jeong, Sang Ki -
dc.contributor.author Ji, Dae Hyeong -
dc.contributor.author Choi, Hyeung Sik -
dc.date.accessioned 2021-11-11T02:50:02Z -
dc.date.available 2021-11-11T02:50:02Z -
dc.date.created 2021-11-01 -
dc.date.issued 2021-10-31 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/41717 -
dc.description.uri 1 -
dc.language English -
dc.publisher Taiwan Association of Engineering and Technology Innovation -
dc.relation.isPartOf The Proceedings of the 10th International Multi-Conference on Engineering and Technology Innovation 2021 (IMETI 2021) -
dc.title A Study on Anomaly Detection of Unmanned Marine Systems Using Machine Learning -
dc.type Conference -
dc.citation.conferenceDate 2021-10-29 -
dc.citation.conferencePlace CH -
dc.citation.conferencePlace Taoyuan, Taiwan -
dc.citation.endPage 57 -
dc.citation.startPage 57 -
dc.citation.title The 10th International Multi-Conference on Engineering and Technology Innovation 2021 (IMETI 2021) -
dc.contributor.alternativeName 정상기 -
dc.contributor.alternativeName 지대형 -
dc.identifier.bibliographicCitation The 10th International Multi-Conference on Engineering and Technology Innovation 2021 (IMETI 2021), pp.57 -
dc.description.journalClass 1 -
Appears in Collections:
Coastal & Ocean Engineering Division > Maritime ICT R&D Center > 2. Conference Papers
Marine Domain Management Research Division > Marine Security and Safety Research Center > 2. Conference Papers
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse