인공신경망을 이용한 X-Band 레이다 유의파고 추정 KCI

Title
인공신경망을 이용한 X-Band 레이다 유의파고 추정
Alternative Title
Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network
Author(s)
박재성; 안경모; 오찬영; 장연식
KIOST Author(s)
Chang, Yeon S.(장연식)
Alternative Author(s)
장연식
Publication Year
2020-12
Abstract
Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio ( ), both and the peak period (TP), and ANN with 3 parameters (, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (, TP, and Rval > k) yields best result.

항해용 X-band 레이다를 이용한 파랑관측은 기존의 파랑관측 방법인 부이식 파고계, 압력식 파고계, 초음파식 파고계에 비해 많은 이점이 있다. 예를 들면 유실과 파손의 위험이 없고, 유지관리 비용이 적게 들며, 심해부터 천해까지 파랑의 공간적 분포를 알 수 있다. 본 논문에서는 레이다형 파고계의 유의파고 측정 정확도를 높이는 인공신경망을 이용한 알고리즘을 제시하였다. 레이다형 파고계에서 유의파고를 추정하는 전통적인 방법은 신호대 잡음 비율( ) 또는 신호 대 잡음 비율과 첨두주기(TP)를 이용하는 방법이 있다. 본 연구에서는 신호 대 잡음 비율, 첨두주기 및 레이다 이미지 해상도 비율(Rval > k)을 입력변수로 하는 인공신경망 알고리즘을 이용하여 유의파고 추정의 정확도를 향상시켰다. 개발된 알고리즘을 울진 후정해수욕장에서 초음파식 파고계로 측정한 유의파고의 시계열과 비교하여 정확도 향상을 확인하였다.
ISSN
1976-8192
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/41383
Bibliographic Citation
한국해안·해양공학회논문집, v.32, no.6, pp.561 - 568, 2020
Publisher
한국해안,해양공학회
Keywords
X-band radar; significant wave heights; machine learning; artificial neural network (ANN); peak period; X-band 레이다; 유의파고; 머신러닝; 인공신경망; 첨두주기
Type
Article
Language
English
Publisher
한국해안,해양공학회
Related Researcher
Research Interests

Coastal hydrodynamics,Coastal erosion,Turbulence model,연안수리역학,연안침식,난류모델

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse