Global carbon budget 2013 SCIE SCOPUS

DC Field Value Language Le Quere, C. - Peters, G. P. - Andres, R. J. - Andrew, R. M. - Boden, T. A. - Ciais, P. - Friedlingstein, P. - Houghton, R. A. - Marland, G. - Moriarty, R. - Sitch, S. - Tans, P. - Arneth, A. - Arvanitis, A. - Bakker, D. C. E. - Bopp, L. - Canadell, J. G. - Chini, L. P. - Doney, S. C. - Harper, A. - Harris, I. - House, J. I. - Jain, A. K. - Jones, S. D. - Kato, E. - Keeling, R. F. - Goldewijk, K. Klein - Koertzinger, A. - Koven, C. - Lefevre, N. - Maignan, F. - Omar, A. - Ono, T. - Park, G. -H. - Pfeil, B. - Poulter, B. - Raupach, M. R. - Regnier, P. - Roedenbeck, C. - Saito, S. - Schwinger, J. - Segschneider, J. - Stocker, B. D. - Takahashi, T. - Tilbrook, B. - van Heuven, S. - Viovy, N. - Wanninkhof, R. - Wiltshire, A. - Zaehle, S. - 2020-04-20T05:30:36Z - 2020-04-20T05:30:36Z - 2020-01-28 - 2014 -
dc.identifier.issn 1866-3508 -
dc.identifier.uri -
dc.description.abstract Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (E-FF) are based on energy statistics, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), E-FF was 8.6 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.5 +/- 0.5 GtC yr(-1), and S-LAND 2.8 +/- 0.8 GtC yr(-1). For year 2012 alone, E-FF grew to 9.7 +/- 0.5 GtC yr(-1), 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and assuming an E-LUC of 1.0 +/- 0.5 GtC yr(-1) (based on the 2001-2010 average), S-LAND was 2.7 +/- 0.9 GtC yr(-1). G(ATM) was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 +/- 0.10 ppm averaged over 2012. We estimate that E-FF will increase by 2.1% (1.1-3.1 %) to 9.9 +/- 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 +/- 55 GtC for 1870-2013, about 70% from E-FF (390 +/- 20 GtC) and 30% from E-LUC (145 +/- 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quere et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2013_V2.3). -
dc.description.uri 1 -
dc.language English -
dc.subject LAND-USE CHANGE -
dc.subject ATMOSPHERIC CO2 -
dc.subject FIRE EMISSIONS -
dc.subject 3 DECADES -
dc.title Global carbon budget 2013 -
dc.type Article -
dc.citation.endPage 263 -
dc.citation.startPage 235 -
dc.citation.title EARTH SYSTEM SCIENCE DATA -
dc.citation.volume 6 -
dc.citation.number 1 -
dc.identifier.bibliographicCitation EARTH SYSTEM SCIENCE DATA, v.6, no.1, pp.235 - 263 -
dc.identifier.doi 10.5194/essd-6-235-2014 -
dc.identifier.scopusid 2-s2.0-84902488927 -
dc.identifier.wosid 000356933700017 -
dc.type.docType Article; Data Paper -
dc.description.journalClass 1 -
dc.subject.keywordPlus LAND-USE CHANGE -
dc.subject.keywordPlus ENVIRONMENT SIMULATOR JULES -
dc.subject.keywordPlus ANTHROPOGENIC CO2 UPTAKE -
dc.subject.keywordPlus EARTH SYSTEM MODEL -
dc.subject.keywordPlus DIOXIDE EMISSIONS -
dc.subject.keywordPlus ATMOSPHERIC CO2 -
dc.subject.keywordPlus TERRESTRIAL ECOSYSTEMS -
dc.subject.keywordPlus INORGANIC CARBON -
dc.subject.keywordPlus FIRE EMISSIONS -
dc.subject.keywordPlus 3 DECADES -
dc.relation.journalWebOfScienceCategory Geosciences, Multidisciplinary -
dc.relation.journalWebOfScienceCategory Meteorology & Atmospheric Sciences -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Geology -
dc.relation.journalResearchArea Meteorology & Atmospheric Sciences -
Appears in Collections:
Marine Environmental & Climate Research Division > Marine Environmental Research Center > 1. Journal Articles
Files in This Item:
There are no files associated with this item.


Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.