Phlorotannin protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced HUVECs

Title
Phlorotannin protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced HUVECs
Author(s)
허수진; 예보람; 장지이; 김민선; 이승홍; 전유진
KIOST Author(s)
Heo, Soo Jin(허수진)
Alternative Author(s)
허수진; 예보람; 장지이; 김민선
Publication Year
2014-10-27
Abstract
Hyperglycemia-induced oxidative stress accelerates endothelial cell dysfunctions, which cause various complications of diabetes. The protective effects of 6,6′-bieckol (BEK), one of phlorotannin compound purified from Ecklonia cava against high-glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs), which is susceptible to oxidative stress. High glucose (30 mM) treatment induced HUVECs’ cell death, but BEK, at concentration 10 or 50 μg/ml, significantly inhibited the high-glucose-induced cytotoxicity. Furthermore, treatment with BEK dose-dependently decreased thiobarbituric acid reactive substances (TBARS), intracellular reactive oxygen species (ROS) generation, and nitric oxide level increased by high glucose. In addition, high glucose levels induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but BEK treatment reduced the overexpressions of these proteins. These findings indicate that BEK is a potential therapeutic agent that will prevent diabetic endothelial dysfunction and related complications. high-glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs), which is susceptible to oxidative stress. High glucose (30 mM) treatment induced HUVECs’ cell death, but BEK, at concentration 10 or 50 μg/ml, significantly inhibited the high-glucose-induced cytotoxicity. Furthermore, treatment with BEK dose-dependently decreased thiobarbituric acid reactive substances (TBARS), intracellular reactive oxygen species (ROS) generation, and nitric oxide level increased by high glucose. In addition, high glucose levels induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but BEK treatment reduced the overexpressions of these proteins. These findings indicate that BEK is a potential therapeutic agent that will prevent diabetic endothelial dysfunction and related complications.
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/25899
Bibliographic Citation
The 10th KSMB Annual Meeting & Symposium, pp.93, 2014
Publisher
한국해양바이오학회
Type
Conference
Language
English
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse