A Novel Glycosyl Hydrolase Family 16 beta-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus
SCIE
SCOPUS
KCI
Cited 6 time in
WEB OF SCIENCE
Cited 11 time in
Scopus
-
Title
- A Novel Glycosyl Hydrolase Family 16 beta-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus
-
Author(s)
- Lee, Youngdeuk; Jo, Eunyoung; Lee, Yeon-Ju; Hettiarachchi, Sachithra Amarin; Park, Gun-Hoo; Lee, Su-Jin; Heo, Soo-Jin; Kang, Do-Hyung; Oh, Chulhong
- KIOST Author(s)
- Lee, Young Deuk(이영득); Jo, Eunyoung(조은영); Lee, Yeon Ju(이연주); Heo, Soo Jin(허수진); Kang, Do Hyung(강도형); Oh, Chul Hong(오철홍)
-
Alternative Author(s)
- 이영득; 조은영; 이연주; Amarin; 허수진; 강도형; 오철홍
-
Publication Year
- 2018-05
-
Abstract
- The agarase gene gaa16a was identified from a draft genome sequence of Gilvimarinus agarilyticus JEA5, an agar-utilizing marine bacterium. Recently, three agarase-producing bacteria, G. chinensis, G. polysaccharolyticus, and G. agarilyticus, in the genus Gilvimarinus were reported. However, there have been no reports of the molecular characteristics and biochemical properties of these agarases. In this study, we analyzed the molecular characteristics and biochemical properties of agarases in Gilvimarinus. Gaa16A comprised a 1,323-bp open reading frame encoding 441 amino acids. The predicted molecular mass and isoelectric point were 49 kDa and 4.9, respectively. The amino acid sequence of Gaa16A showed features typical of glycosyl hydrolase family 16 (GH16) beta-agarases, including a GH16 domain, carbohydrate-binding region (RICIN domain), and signal peptide. Recombinant Gaa16A (excluding the signal peptide and carbohydrate-binding region, rGaa16A) was expressed as a fused protein with maltose-binding protein at its N-terminus in Escherichia coli. rGaa16A had maximum activity at 55 degrees C and pH 7.0 and 103 U/mg of specific activity in the presence of 2.5 mM CaCl2 . The enzyme hydrolyzed agarose to yield neoagarotetraose as the main product. This enzyme may be useful for industrial production of functional neoagaro-oligosaccharides.
-
ISSN
- 1017-7825
-
URI
- https://sciwatch.kiost.ac.kr/handle/2020.kiost/926
-
DOI
- 10.4014/jmb.1709.09050
-
Bibliographic Citation
- JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, v.28, no.5, pp.776 - 783, 2018
-
Publisher
- KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY
-
Subject
- PURIFICATION; CLONING; EXPRESSION; POLYSACCHARIDE; GALACTOSE; GENOME; ENZYME; SP.
-
Keywords
- Gilvimarinus; agarase; neoagaro-oligosaccharides; cloning; overexpression
-
Type
- Article
-
Language
- English
-
Document Type
- Article
- Files in This Item:
-
There are no files associated with this item.
Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.