Autonomous seawater pCO(2) and pH time series from 40 surface buoys and the emergence of anthropogenic trends SCIE SCOPUS

DC Field Value Language Sutton, Adrienne J. - Feely, Richard A. - Maenner-Jones, Stacy - Musielwicz, Sylvia - Osborne, John - Dietrich, Colin - Monacci, Natalie - Cross, Jessica - Bott, Randy - Kozyr, Alex - Andersson, Andreas J. - Bates, Nicholas R. - Cai, Wei-Jun - Cronin, Meghan F. - De Carlo, Eric H. - Hales, Burke - Howden, Stephan D. - Lee, Charity M. - Manzello, Derek P. - McPhaden, Michael J. - Melendez, Melissa - Mickett, John B. - Newton, Jan A. - Noakes, Scott E. - Noh, Jae Hoon - Olafsdottir, Solveig R. - Salisbury, Joseph E. - Send, Uwe - Trull, Thomas W. - Vandemark, Douglas C. - Weller, Robert A. - 2020-04-16T08:15:18Z - 2020-04-16T08:15:18Z - 2020-02-19 - 2019-03-26 -
dc.identifier.issn 1866-3508 -
dc.identifier.uri -
dc.description.abstract Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO(2) (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO(2) and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO(2) time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9 +/- 0.3 and 1.6 +/- 0.3 mu atm yr(-1), respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https.//doi. org/10.7289/V5DB8043 and https.// (Sutton et al., 2018). -
dc.description.uri 1 -
dc.language English -
dc.subject CARBON-DIOXIDE -
dc.subject CO2 -
dc.subject PACIFIC -
dc.subject CHEMISTRY -
dc.subject INDICATOR -
dc.subject EXTREMES -
dc.subject IMPACTS -
dc.title Autonomous seawater pCO(2) and pH time series from 40 surface buoys and the emergence of anthropogenic trends -
dc.type Article -
dc.citation.endPage 439 -
dc.citation.startPage 421 -
dc.citation.title EARTH SYSTEM SCIENCE DATA -
dc.citation.volume 11 -
dc.citation.number 1 -
dc.identifier.bibliographicCitation EARTH SYSTEM SCIENCE DATA, v.11, no.1, pp.421 - 439 -
dc.identifier.doi 10.5194/essd-11-421-2019 -
dc.identifier.scopusid 2-s2.0-85063590940 -
dc.identifier.wosid 000462540200001 -
dc.type.docType Article; Data Paper -
dc.description.journalClass 1 -
dc.subject.keywordPlus OCEAN ACIDIFICATION -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus NATURAL VARIABILITY -
dc.subject.keywordPlus CORAL CALCIFICATION -
dc.subject.keywordPlus CO2 -
dc.subject.keywordPlus PACIFIC -
dc.subject.keywordPlus CHEMISTRY -
dc.subject.keywordPlus INDICATOR -
dc.subject.keywordPlus EXTREMES -
dc.subject.keywordPlus IMPACTS -
dc.relation.journalWebOfScienceCategory Geosciences, Multidisciplinary -
dc.relation.journalWebOfScienceCategory Meteorology & Atmospheric Sciences -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Geology -
dc.relation.journalResearchArea Meteorology & Atmospheric Sciences -
Appears in Collections:
Ocean Law and Policy Institute > Ocean Law Research Center > 1. Journal Articles
Marine Environmental & Climate Research Division > Marine Ecosystem Research Center > 1. Journal Articles
Files in This Item:
There are no files associated with this item.


Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.