수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율 KCI OTHER

DC Field Value Language
dc.contributor.author 마진석 -
dc.contributor.author 오승용 -
dc.contributor.author 조재윤 -
dc.date.accessioned 2020-04-21T06:25:08Z -
dc.date.available 2020-04-21T06:25:08Z -
dc.date.created 2020-02-10 -
dc.date.issued 2003-08 -
dc.identifier.issn 1226-0193 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/5461 -
dc.description.abstract Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N O2 [−10] -N, and N O3 [−10] -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N O3 [−10] -N, and P O4 3− -P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 m2 ) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N O2 [−10] -N, and N O3 [−10] -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N O2 [−10] -N, and N O3 [−10] -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N O2 [−10] -N, and N O3 [−10] -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 m2 tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 m2 tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth. -
dc.description.uri 3 -
dc.publisher 한국양식학회 -
dc.title 수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율 -
dc.title.alternative Inorganic Nutrient Removal Efficiency of Aquatic Plantsfrom Recirculating Aquaculture System -
dc.type Article -
dc.citation.endPage 178 -
dc.citation.startPage 171 -
dc.citation.title 한국양식학회지 -
dc.citation.volume 16 -
dc.citation.number 3 -
dc.contributor.alternativeName 오승용 -
dc.identifier.bibliographicCitation 한국양식학회지, v.16, no.3, pp.171 - 178 -
dc.identifier.kciid ART000888432 -
dc.description.journalClass 3 -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Recirculating system -
dc.subject.keywordAuthor Water treatment -
dc.subject.keywordAuthor Nutrients removal -
dc.subject.keywordAuthor Eichhornia crassipes -
dc.subject.keywordAuthor Pistia stratiotes -
dc.description.journalRegisteredClass kci -
dc.description.journalRegisteredClass other -
Appears in Collections:
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse