Loss functions in machine learning for seismic random noise attenuation SCIE SCOPUS

DC Field Value Language
dc.contributor.author Jun, Hyunggu -
dc.contributor.author Kim, Han Joon -
dc.date.accessioned 2023-11-22T05:50:15Z -
dc.date.available 2023-11-22T05:50:15Z -
dc.date.created 2023-11-22 -
dc.date.issued 2024-03 -
dc.identifier.issn 0016-8025 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/44861 -
dc.description.abstract Seismic random noise is one of the main factors that degrade the quality of seismic data. Therefore, seismic random noise attenuation should be performed appropriately through several stages during seismic data processing, and this requires sufficient experience and knowledge because the proper hyperparameters need to be determined based on the features of the noise in the target seismic data. Recently, machine learning–based seismic noise attenuation has been widely studied because it provides suitable results by learning noise features from noisy data, unlike conventional physics-based approaches. There are many important factors in machine learning, and, here, we focus on the loss functions of machine learning in terms of seismic random noise attenuation. The most widely used loss function is l2, but we train a model with various kinds of single and multiple loss functions and attenuate seismic random noise. We analyse the efficiency of loss functions by comparing the noise-attenuated results of synthetic and field seismic data qualitatively and quantitatively. Our analysis indicates that the multiple loss function with the l1 norm can be a proper choice for random noise suppression of seismic data. -
dc.description.uri 1 -
dc.language English -
dc.publisher Blackwell Publishing Inc. -
dc.title Loss functions in machine learning for seismic random noise attenuation -
dc.type Article -
dc.citation.endPage 995 -
dc.citation.startPage 978 -
dc.citation.title Geophysical Prospecting -
dc.citation.volume 72 -
dc.citation.number 3 -
dc.contributor.alternativeName 김한준 -
dc.identifier.bibliographicCitation Geophysical Prospecting, v.72, no.3, pp.978 - 995 -
dc.identifier.doi 10.1111/1365-2478.13449 -
dc.identifier.scopusid 2-s2.0-85176145050 -
dc.identifier.wosid 001095721300001 -
dc.type.docType Article; Early Access -
dc.description.journalClass 1 -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor data processing -
dc.subject.keywordAuthor noise -
dc.subject.keywordAuthor seismics -
dc.subject.keywordAuthor signal processing -
dc.relation.journalWebOfScienceCategory Geochemistry & Geophysics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Geochemistry & Geophysics -
Appears in Collections:
Ocean Climate Solutions Research Division > Ocean Climate Response & Ecosystem Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse