Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning SCIE SCOPUS

DC Field Value Language
dc.contributor.author Jang, Eunna -
dc.contributor.author Kim, Young Jun -
dc.contributor.author Im, Jungho -
dc.contributor.author Park, Young Gyu -
dc.contributor.author Sung, Taejun -
dc.date.accessioned 2022-03-28T00:30:00Z -
dc.date.available 2022-03-28T00:30:00Z -
dc.date.created 2022-03-28 -
dc.date.issued 2022-05 -
dc.identifier.issn 0034-4257 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/42409 -
dc.description.abstract Sea surface salinity (SSS) provides information on the variability of ocean dynamics (global water cycle and ocean circulation) and air-sea interactions, thereby contributing to the identification and prediction of significant changes in the global climate. Monitoring global SSS via satellite observations has been possible using L-band microwave radiometers since 2010; however, their performance is limited by their retrieval algorithms under conditions such as radio frequency interference, low sea surface temperatures, and strong winds. This study proposes a new global SSS model using multi-source data based on seven machine learning approaches: K-nearest neighbor, support vector regression, artificial neural network, random forest, extreme gradient boosting, light gradient boosting model, and gradient boosted regression trees (GBRT). Five Soil Moisture Active Passive (SMAP) products, Hybrid Coordinate Ocean Model (HYCOM) SSS, and four ancillary data were used as input variables. All models produced better performance than either SMAP or HYCOM SSS products, with the top performing GBRT model reducing the root mean square difference for the validation dataset from 1.062 to 0.259 practical salinity units compared to the SMAP SSS product. The improved SSS products had increased correlation with the in-situ data for both low-and high-salinity waters across all global oceans, thus further advancing the understanding and monitoring of global SSS. -
dc.description.uri 1 -
dc.language English -
dc.publisher Elsevier BV -
dc.title Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning -
dc.type Article -
dc.citation.title Remote Sensing of Environment -
dc.citation.volume 273 -
dc.contributor.alternativeName 박영규 -
dc.identifier.bibliographicCitation Remote Sensing of Environment, v.273 -
dc.identifier.doi 10.1016/j.rse.2022.112980 -
dc.identifier.scopusid 2-s2.0-85126824509 -
dc.identifier.wosid 000767960300002 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.description.isOpenAccess N -
dc.subject.keywordPlus GULF-OF-MEXICO -
dc.subject.keywordPlus OCEAN SALINITY -
dc.subject.keywordPlus NORTHERN GULF -
dc.subject.keywordPlus SOIL-MOISTURE -
dc.subject.keywordPlus SMOS -
dc.subject.keywordPlus RETRIEVALS -
dc.subject.keywordPlus ALGORITHMS -
dc.subject.keywordPlus PREDICTION -
dc.subject.keywordPlus IMPACT -
dc.subject.keywordPlus MODEL -
dc.subject.keywordAuthor GBRT -
dc.subject.keywordAuthor Sea surface salinity -
dc.subject.keywordAuthor SMAP -
dc.subject.keywordAuthor HYCOM -
dc.subject.keywordAuthor Machine learning -
dc.relation.journalWebOfScienceCategory Environmental Sciences -
dc.relation.journalWebOfScienceCategory Remote Sensing -
dc.relation.journalWebOfScienceCategory Imaging Science & Photographic Technology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Environmental Sciences & Ecology -
dc.relation.journalResearchArea Remote Sensing -
dc.relation.journalResearchArea Imaging Science & Photographic Technology -
Appears in Collections:
Ocean Climate Solutions Research Division > Ocean Circulation & Climate Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse