A comparison of two vertical-mixing schemes on the simulation of the mixed layer depth and upper ocean temperature in an ocean general circulation model SCOPUS KCI

DC Field Value Language
dc.contributor.author Yi, D.-W. -
dc.contributor.author Jang, C.J. -
dc.contributor.author Yeh, S.-W. -
dc.contributor.author Park, T. -
dc.contributor.author Shin, H.-J. -
dc.contributor.author Kim, D. -
dc.contributor.author Kug, J.-S. -
dc.date.accessioned 2020-04-20T06:25:07Z -
dc.date.available 2020-04-20T06:25:07Z -
dc.date.created 2020-01-28 -
dc.date.issued 2013 -
dc.identifier.issn 1598-141X -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/3332 -
dc.description.abstract Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM). In this study, by using Modular Ocean Model version 4 (MOM4) developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST) simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion, what determines SST is crucial in interpreting the relationship between SST and mixed layer depth. -
dc.description.uri 3 -
dc.language Korean -
dc.title A comparison of two vertical-mixing schemes on the simulation of the mixed layer depth and upper ocean temperature in an ocean general circulation model -
dc.type Article -
dc.citation.endPage 258 -
dc.citation.startPage 249 -
dc.citation.title Ocean and Polar Research -
dc.citation.volume 35 -
dc.citation.number 3 -
dc.contributor.alternativeName 이동원 -
dc.contributor.alternativeName 장찬주 -
dc.contributor.alternativeName 신호정 -
dc.contributor.alternativeName 국종성 -
dc.identifier.bibliographicCitation Ocean and Polar Research, v.35, no.3, pp.249 - 258 -
dc.identifier.doi 10.4217/OPR.2013.35.3.249 -
dc.identifier.scopusid 2-s2.0-84940341820 -
dc.type.docType Note -
dc.identifier.kciid ART001803146 -
dc.description.journalClass 3 -
dc.subject.keywordAuthor Mixed layer depth -
dc.subject.keywordAuthor Ocean general circulation model -
dc.subject.keywordAuthor Sea surface temperature -
dc.subject.keywordAuthor Tropical equatorial pacific -
dc.subject.keywordAuthor Vertical mixing scheme -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
Appears in Collections:
Ocean Climate Solutions Research Division > Ocean Circulation & Climate Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse