Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea SCIE SCOPUS

DC Field Value Language
dc.contributor.author Wang, S. Q. -
dc.contributor.author Ishizaka, J. -
dc.contributor.author Yamaguchi, H. -
dc.contributor.author Tripathy, S. C. -
dc.contributor.author Hayashi, M. -
dc.contributor.author Xu, Y. J. -
dc.contributor.author Mino, Y. -
dc.contributor.author Matsuno, T. -
dc.contributor.author Watanabe, Y. -
dc.contributor.author Yoo, S. J. -
dc.date.accessioned 2020-04-20T05:25:02Z -
dc.date.available 2020-04-20T05:25:02Z -
dc.date.created 2020-01-28 -
dc.date.issued 2014 -
dc.identifier.issn 1726-4170 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/3021 -
dc.description.abstract Phytoplankton light absorption properties were investigated at the surface and subsurface chlorophyll a maximum (SCM) layer in the East China Sea (ECS), a marginal sea which is strongly influenced by the Changjiang discharge in summer. Results from ECS were compared with those from the Tsushima Strait (TS) where the influence of Changjiang discharge is less. The probable controlling factors, packaging effect (cell size) and pigment composition of total chlorophyll a (Tchl a)-specific absorption coefficient (a(ph)*(lambda)) were examined by the corresponding measurements of pigments identified by high-performance liquid chromatography. We observed distinct phytoplankton size structure and thereby absorption properties between ECS and TS. At the surface, mixed populations of micro-, nanoand pico-phytoplankton were recorded in ECS while picophytoplankton dominated in TS, generating a lower average a(ph)*(lambda) in ECS than in TS. Within SCM, average a(ph)*(lambda) was higher in ECS than in TS because of the dominance of nano-and micro-phytoplankton in ECS and TS, respectively. By pooling surface and SCM samples, we found regular trends in phytoplankton size-fraction versus Tchl a; and correlations between a(ph)*(lambda) and Tchl a consistent with previous observations for the global ocean in TS but not in ECS. In ECS phytoplankton size-fraction was not correlated with Tchl a, which consequently caused poor relationships between a(ph)*(lambda) and Tchl a. The abnormal values mainly originated from the surface low-salinity waters and SCM waters beneath them. At high Tchl a, a(ph)*(lambda) of these samples was substantially higher compared to the values in TS and from the global regressions, which was attributable to the lower micro-phytoplankton fraction, and higher nano-and/or pico-phytoplankton fractions in ECS. These observations indicated that the distinct light absorption properties of phytoplankton in ECS were possibly influenced by the Changjiang discharge. Our findings imply that general bio-optical algorithms proposed based on the correlations between a(ph)*(lambda) and Tchl a or the patterns in size-fraction versus Tchl a are not applicable in ECS, and need to be carefully considered when using these general algorithms in river-influenced regions. -
dc.description.uri 1 -
dc.language English -
dc.publisher COPERNICUS GESELLSCHAFT MBH -
dc.subject OCEAN-COLOR -
dc.subject NATURAL PHYTOPLANKTON -
dc.subject CHLOROPHYLL-A -
dc.subject YANGTZE-RIVER -
dc.subject SPECTRAL ABSORPTION -
dc.subject COASTAL WATERS -
dc.subject SIZE CLASSES -
dc.subject YELLOW SEA -
dc.subject CELL-SIZE -
dc.subject COMMUNITY -
dc.title Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea -
dc.type Article -
dc.citation.endPage 1773 -
dc.citation.startPage 1759 -
dc.citation.title BIOGEOSCIENCES -
dc.citation.volume 11 -
dc.citation.number 7 -
dc.contributor.alternativeName 유신재 -
dc.identifier.bibliographicCitation BIOGEOSCIENCES, v.11, no.7, pp.1759 - 1773 -
dc.identifier.doi 10.5194/bg-11-1759-2014 -
dc.identifier.scopusid 2-s2.0-84898732661 -
dc.identifier.wosid 000334609000007 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.subject.keywordPlus OCEAN-COLOR -
dc.subject.keywordPlus NATURAL PHYTOPLANKTON -
dc.subject.keywordPlus CHLOROPHYLL-A -
dc.subject.keywordPlus YANGTZE-RIVER -
dc.subject.keywordPlus SPECTRAL ABSORPTION -
dc.subject.keywordPlus COASTAL WATERS -
dc.subject.keywordPlus SIZE CLASSES -
dc.subject.keywordPlus YELLOW SEA -
dc.subject.keywordPlus CELL-SIZE -
dc.subject.keywordPlus COMMUNITY -
dc.relation.journalWebOfScienceCategory Ecology -
dc.relation.journalWebOfScienceCategory Geosciences, Multidisciplinary -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Environmental Sciences & Ecology -
dc.relation.journalResearchArea Geology -
Appears in Collections:
Jeju Research Institute > Jeju Marine Research Center > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse