점토지반에 관입된 석션매입앵커의 인발거동에 대한 수치해석

DC Field Value Language
dc.contributor.author 나선홍 -
dc.contributor.author 장인성 -
dc.contributor.author 오명학 -
dc.contributor.author 권오순 -
dc.date.accessioned 2020-07-16T07:51:52Z -
dc.date.available 2020-07-16T07:51:52Z -
dc.date.created 2020-02-11 -
dc.date.issued 2013-09-24 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/26774 -
dc.description.abstract As the offshore wind power tends to locate farther from the coast for efficient generation of electricity, the interest of foundation systems of which construction sequence is economical and convenient under deep water circumstance is increasing. Mooring anchor system has been utilized as one of the most popular ways for anchoring of vessels or floating structures, and various types of anchor and mooring system have been investigated for large structures under diverse loading condition. In this paper, the pullout behavior of the modified embedded suction anchor (ESA) is studied using numerical analysis. The behavior of the embedded suction anchor is simulated using finite element method, and Adaptive Meshing (AM) technique approach incorporated in Abaqus/Explicit is applied to simulate the large deformation of soil caused by continuous pullout of anchor. The three dimensional modeling is performed to duplicate the round body shape with flanges of the embedded suction anchor. The anchor is assumed as rigid body and clay is considered as perfectly plastic soil model with a Tresca yield criterion. The pullout capacities after different initial rotations show similar results with the maximum horizontal pullout capacity and the load inclination of 30º or 40º at the bottom point of the ESA has an advantage in that reduced pullout load can rotate the ESA.asing. Mooring anchor system has been utilized as one of the most popular ways for anchoring of vessels or floating structures, and various types of anchor and mooring system have been investigated for large structures under diverse loading condition. In this paper, the pullout behavior of the modified embedded suction anchor (ESA) is studied using numerical analysis. The behavior of the embedded suction anchor is simulated using finite element method, and Adaptive Meshing (AM) technique approach incorporated in Abaqus/Explicit is applied to simulate the large deformation of soil caused by continuous pullout of anchor. The three dimensional modeling is performed to duplicate the round body shape with flanges of the embedded suction anchor. The anchor is assumed as rigid body and clay is considered as perfectly plastic soil model with a Tresca yield criterion. The pullout capacities after different initial rotations show similar results with the maximum horizontal pullout capacity and the load inclination of 30º or 40º at the bottom point of the ESA has an advantage in that reduced pullout load can rotate the ESA. -
dc.description.uri 1 -
dc.language English -
dc.publisher APAC -
dc.relation.isPartOf Proceedings of the 7th International Conference on Asian and Pacific Coasts, APAC 2013 -
dc.title 점토지반에 관입된 석션매입앵커의 인발거동에 대한 수치해석 -
dc.title.alternative NUMERICAL SIMULATION OF PULLOUT BEHAVIOR OF EMBEDDED SUCTION ANCHORS IN CLAY -
dc.type Conference -
dc.citation.conferenceDate 2013-09-24 -
dc.citation.conferencePlace IO -
dc.citation.endPage 865 -
dc.citation.startPage 860 -
dc.citation.title 7th International Conference on Asian and Pacific Coasts, APAC 2013 -
dc.contributor.alternativeName 나선홍 -
dc.contributor.alternativeName 장인성 -
dc.contributor.alternativeName 오명학 -
dc.contributor.alternativeName 권오순 -
dc.identifier.bibliographicCitation 7th International Conference on Asian and Pacific Coasts, APAC 2013, pp.860 - 865 -
dc.identifier.scopusid 2-s2.0-84987767156 -
dc.description.journalClass 1 -
Appears in Collections:
Marine Industry Research Division > Maritime ICT & Mobility Research Department > 2. Conference Papers
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse