Substructural Identification of Flexural Rigidity for Beam-Like Structures SCIE SCOPUS

DC Field Value Language
dc.contributor.author Koo, Ki-Young -
dc.contributor.author Yi, Jin-Hak -
dc.date.accessioned 2020-04-20T03:55:30Z -
dc.date.available 2020-04-20T03:55:30Z -
dc.date.created 2020-01-28 -
dc.date.issued 2015 -
dc.identifier.issn 1070-9622 -
dc.identifier.uri https://sciwatch.kiost.ac.kr/handle/2020.kiost/2611 -
dc.description.abstract This study proposes a novel substructural identification method based on the Bernoulli-Euler beam theory with a single variable optimization scheme to estimate the flexural rigidity of a beam-like structure such as a bridge deck, which is one of the major structural integrity indices of a structure. In ordinary bridges, the boundary condition of a superstructure can be significantly altered by aging and environmental variations, and the actual boundary conditions are generally unknown or difficult to be estimated correctly. To efficiently bypass the problems related to boundary conditions, a substructural identification method is proposed to evaluate the flexural rigidity regardless of the actual boundary conditions by isolating an identification region within the internal substructure. The proposed method is very simple and effective as it utilizes the single variable optimization based on the transfer function formulated utilizing Bernoulli Euler beam theory for the inverse analysis to obtain the flexural rigidity. This novel method is also rigorously investigated by applying it for estimating the flexural rigidity of a simply supported beam model with different boundary conditions, a concrete plate-girder bridge model with different length of an internal substructure, a cantilever-type wind turbine tower structure with different type of excitation, and a steel box-girder bridge model with internal structural damages. -
dc.description.uri 1 -
dc.language English -
dc.publisher HINDAWI LTD -
dc.subject DAMAGE IDENTIFICATION -
dc.title Substructural Identification of Flexural Rigidity for Beam-Like Structures -
dc.type Article -
dc.citation.title SHOCK AND VIBRATION -
dc.contributor.alternativeName 이진학 -
dc.identifier.bibliographicCitation SHOCK AND VIBRATION -
dc.identifier.doi 10.1155/2015/726410 -
dc.identifier.scopusid 2-s2.0-84925326270 -
dc.identifier.wosid 000351412000001 -
dc.type.docType Article -
dc.description.journalClass 1 -
dc.subject.keywordPlus DAMAGE IDENTIFICATION -
dc.relation.journalWebOfScienceCategory Acoustics -
dc.relation.journalWebOfScienceCategory Engineering, Mechanical -
dc.relation.journalWebOfScienceCategory Mechanics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Acoustics -
dc.relation.journalResearchArea Engineering -
dc.relation.journalResearchArea Mechanics -
Appears in Collections:
Marine Industry Research Division > Ocean Space Development & Energy Research Department > 1. Journal Articles
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse