Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis

Title
Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis
Author(s)
이성혁; 김민식; 이재학; 김태완; 이성목; 정해창; 이정현; 권개경; 이현숙; 강성균
KIOST Author(s)
Lee, Seong Hyuk(이성혁)Jung, Hae Chang(정해창)Lee, Jung Hyun(이정현)Kwon, Kae Kyoung(권개경)Lee, Hyun Sook(이현숙)Kang, Sung Gyun(강성균)
Publication Year
2016-04-21
Abstract
The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. Inthis study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.nce H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/24881
Bibliographic Citation
한국미생물학회 국제학술대회, pp.195, 2016
Publisher
한국미생물학회
Type
Conference
Language
English
Publisher
한국미생물학회
Related Researcher
Research Interests

marine biotechnology,molecular microbiology,해양생명공학,분자미생물학

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse