Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus) SCIE SCOPUS

Cited 311 time in WEB OF SCIENCE Cited 346 time in Scopus
Title
Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus)
Author(s)
Jeong, Chang-Bum; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Hwang, Dae-Sik; Hwang, Un-Ki; Zhou, Bingsheng; Souissi, Sami; Lee, Su-Jae; Lee, Jae-Seong
Publication Year
2016-08-16
Abstract
In this study, we evaluated accumulation and adverse effects of ingestion of microplastics in the monogonont rotifer (Brachionus koreanus). The dependence of microplastic toxicity on particle size-was investigated by measuring several in vivo end points and studying the ingestion and egestion using 0.05-, 0.5-, and 6-mu m nonfunctionalized polystyrene microbeads. To identify the defense mechanisms activated in response to microplastic exposure, the activities of several antioxidant-related enzymes and the phosphorylation status of mitogen-activated protein kinases (MAPKs) were determined. Exposure to polystyrene microbeads of all sizes led to significant size dependent effects, including reduced groWth rate, reduced fecundity, decreased lifespan and longer reproduction time. Rotifers exposed to 6-mu m fluorescently labeled microbeads exhibited almost no fluorescence after 24 h, while rotifers exposed to 0.05- and 0.5-mu m fluoresceatly labeled inicrobeads displayed fluorescence until 48 h, suggesting that 6-mu m microbeads are more effectively egested from B. koreanus than 0.05- or 0.5-mu m microbeads. This observation provides a potential explanation for our findings that microbead toxicity was size dependent and smaller microbeads were more toxic. In vitro tests revealed that antioxidant-related enzymes and MAPK signaling pathways were significantly activated in response to microplastic exposure in a size-dependent manner.
ISSN
0013-936X
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/2270
DOI
10.1021/acs.est.6b01441
Bibliographic Citation
ENVIRONMENTAL SCIENCE & TECHNOLOGY, v.50, no.16, pp.8849 - 8857, 2016
Publisher
AMER CHEMICAL SOC
Subject
GROWTH-RETARDATION; SIGNALING PATHWAY; MARINE; FECUNDITY; MUSSEL; CELLS; ECOTOXICOLOGY; ENVIRONMENT; PARTICLES
Type
Article
Language
English
Document Type
Article
Publisher
AMER CHEMICAL SOC
Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse