The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit SCIE SCOPUS KCI

Cited 8 time in WEB OF SCIENCE Cited 31 time in Scopus
Title
The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit
Author(s)
Lee, June-Yi; Kwon, MinHo; Yun, Kyung-Sook; Min, Seung-Ki; Park, In-Hong; Ham, Yoo-Geun; Jin, Emilia Kyung; Kim, Joo-Hong; Seo, Kyong-Hwan; Kim, WonMoo; Yim, So-Young; Yoon, Jin-Ho
KIOST Author(s)
Kwon, Min Ho(권민호)
Publication Year
2017-05
Abstract
Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.
ISSN
1976-7633
URI
https://sciwatch.kiost.ac.kr/handle/2020.kiost/1247
DOI
10.1007/s13143-017-0032-5
Bibliographic Citation
ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, v.53, no.2, pp.257 - 272, 2017
Publisher
KOREAN METEOROLOGICAL SOC
Subject
EL NINO/SOUTHERN OSCILLATION; TROPICAL WESTERN PACIFIC; NORTH PACIFIC; INTERDECADAL CHANGES; INTERANNUAL VARIABILITY; KOREAN PENINSULA; RAINFALL VARIABILITY; SOUTH-KOREA; CLIMATE; ATLANTIC
Keywords
Changma; East Asian summer monsoon; interdecadal change; Typhoon landfalls; ENSO
Type
Article
Language
English
Document Type
Review
Publisher
KOREAN METEOROLOGICAL SOC
Related Researcher
Research Interests

climate dynamics,climate prediction,기후역학,기후예측

Files in This Item:
There are no files associated with this item.

qrcode

Items in ScienceWatch@KIOST are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse