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Plastic is regarded as a major environmental concern. In particular, nanoplastics and
microplastics (NMPs) are attracting global attention due to their potential impact on aquatic
organisms. Here, we examined the effects of NMPs (50 nm polystyrene microbead
nanoplastics [NPs] and 45 pym microplastics [MPs]) on oxidative status and gut microbiota in
the marine medaka Oryzias melastigma. The NP-exposed group exhibited stronger oxidative
stress with higher activation levels of antioxidants compared to the MP-exposed group.
However, the MP—exposed group demonstrated induction of intestinal damage (e.g., increased
mucus ratio) with further alterations of gut microbiota, compared to the NP—exposed group. In
particular, MPs caused more significant alterations of microbiota composition at both phylum
and genus levels. Thus, in this study we show distinct toxicity pathways of NPs and MPs, an
oxidative stress—mediated pathway (e.g., antioxidants) induced by NP exposure and dysbiosis
of gut microbiota in association with immune dysfunction induced by MP exposure. Our results
are helpful for expanding our knowledge about the impacts of NMPs as potentially harmful
substances in the aquatic environment.
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The toxicity of arsenic (As) has been reported to be different depending on their chemical
forms. However, its toxicity mechanisms largely remain unknown. In this study, to investigate
toxicity mechanism of As in marine zooplanktons, namely, the rotifer Brachionus plicatilis and
the copepod Paracyclopina nana, metabolites of As were analyzed by using a
high—performance liquid chromatography coupled with inductively coupled plasma mass
spectrometry with in vivo toxicity and antioxidant responses in response to inorganic As,
including arsenate (AsV) and arsenite (Aslll). While Aslll was more toxic than AsV in both
organisms, the rotifer B. plicatilis exhibited stronger tolerance, compared to the copepod P.
nana. The As speciation analysis revealed differences in biotransformation processes in two
species with B. plicatilis having a more simplified process than P. nana, contributing to a
better tolerance against As in the rotifer B. plicatilis compared to P. nana. Moreover, the levels
of GSH content and the regulation of omega class glutathione S—transferases were different in
response to oxidative stress between B. plicatilis and P. nana. These results suggest that the
rotifer B. plicatilis has a unique survival strategy with more efficient biotransformation and
antioxidant responses, compared to P. nana, conferring higher tolerance to As.

AT 2E U AT ol Ey JlhMT o w2 5

sl EolMel oAl 2Me Sis) EBEE | se s M2 UolMel LO/MS 24D A

LC/MS MAMEl =2 s HmNol US T sN S wHEstol uioksAlRl # opla
ot B0l M MalEs o7 Hof #80| JHse




ATAY R =2( V) SH( )
TP QURY EO{HATASS) 7= ¥ MY oF & &l KH(Zs| 2l)
Generation of albino via SLC45a2 gene targeting by
=x/50olH CRISPR/Cas9 in the marine medaka Oryzias
melastigma
HARR( ML) Marine pollution bulletin
= = Impact Factor & ~
=xf ofE =X L
N SCI S™M ofF sM ol £312(5CI) 5.553 (33])
] SCOPUS S*f ofF ol Sy 2l E5l=(SCOPUS)
ISSN 0025-326X AR AL 202005
Agh(H1, wAl, o) SN o Kt== o
T SE(&d) =7t
ErdmERE
SE(EY) Hs SsE(Ea)d
[]
SES(E8)A MY = E PN PSR

=
2

To produce albinism in the marine medaka Oryzias melastigma, we disrupted the solute carrier
family 45 (SLC45a2) gene by clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 with a single guide RNA (sgRNA). Selected sgRNAs were able to target a
SLC45a2 gene as confirmed by genotyping and heteroduplex mobility assay (HMA). Of the
survived embryos after injection, 54.2% and 60.0% embryos exhibited albinism phenotype by
sgRNA1 and sgRNA2, respectively. Deep sequencing at the on-target sites showed different
insertion and deletion (indel) mutation profiles near the DNA cleavage sites, indicating high
efficacy of producing SLC45a2 knock—out mutants by this method. Moreover, HMA at the
potential off-target sites revealed that off-target activity would be induced at a low rate, or not
induced at all. This albino marine medaka will be a good model for marine molecular
ecotoxicology in establishment of diverse in vivo endpoints, and the application of this efficient
gene targeting method in the marine medaka would be useful tool for mechanistic approaches.

AT 2E U ATUBT elnty JlHAT o mg &

HichSAlRlSl REAL XA V& HEE oF 2 | RIISYHUD BaAAE F Al R0 W
EE 3 =202 B A70M Roujsti ZE | £ 0482 HASE 0|MEL SAES Mug
3 Ol4E HFHLS olPet R0l A A AEe s 280l st




Journal of Hazardous Materials 405 (2021) 124207

Contents lists available at ScienceDirect

) Journal of Hazardous Materials
1’ i“

BN

LSEVIER

journal homepage: www.elsevier.com/locate/jhazmat

Research Paper
Different effects of nano- and microplastics on oxidative status and gut
microbiota in the marine medaka Oryzias melastigma

Hye-Min Kang®', Eunjin Byeon b1 Haksoo Jeong®, Min-Sub Kim", Qiqing Chen®¢,
Jae-Seong Lee ™

3 Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
b Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
< State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China

ARTICLE INFO ABSTRACT

Plastic is reg: as a major | concern. In particular, nanoplastics and microplastics (NMPs) are
attracting global attention due to their potential impact on aquatic organisms. Here, we examined the effects of
NMPs (50 nm polystyrene microbead nanoplastics [NPs] and 45 um microplastics [MPs]) on oxidative status and
gut microbiota in the marine medaka Oryzias melasti; The NP-exposed group exhibited stronger oxidative
stress with higher activation levels of antioxidants compared to the MP-exposed group. However, the MP-
exposed group demonstrated induction of intestinal damage (e.g., increased mucus ratio) with further alter-
ations of gut microbiota, compared to the NP-exposed group. In particular, MPs caused more significant alter-
ations of microbiota composition at both phylum and genus levels. Thus, in this study we show distinct toxicity
pathways of NPs and MPs, an oxidative stress-mediated pathway (e.g., antioxidants) induced by NP exposure and
dysbiosis of gut microbiota in association with immune dysfunction induced by MP exposure. Our results are
helpful for expanding our knowledge about the impacts of NMPs as potentially harmful substances in the aquatic

Keywords:

Gut microbiota
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Marine Medaka

environment.

1. Introduction

Plastics are dominant materials for the manufacture of daily neces-
sities and widely used due to their desirable properties (e.g, high
durability) (Andrady and Neal, 2009; Sudhakar et al., 2008). Since the
first production of plastic in 1907, plastic production has increased
approximately 200-fold from 1950 to 2015 (Geyer et al., 2017). Due to
such exponential increases of plastic production, microplastics (MPs)
have been detected in the ocean all around the globe, including South
Korea (1.12-4.74 particles/m>) (Kwon et al., 2020), the surface layer of
North Atlantic Gyre (1.69 particles/m3) (Reisser et al., 2016), and Arctic
Ocean (up to 234 particles/m?’) (Obbard et al., 2014), becoming one of
the gravest of modern environmental problems (Yarsley and Couzens,
1945; Ritchie and Roser, 2020). It is of particular concern that the
numbers of plastic particles in the marine environment are expected to
increase, as plastics are non-degradable but typically split into smaller
particles (Yamada-Onodera et al., 2001) from nano- to micro-sized by
undergoing photo-degradation and weathering processes in the ocean,

* Corresponding author.
E-mail address: jslee2@skku.edu (J.-S. Lee).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.jhazmat.2020.124207

leading to long-lasting deleterious effects upon the aquatic environment
(Laist, 1997; Ryan et al., 2009). Of the diverse sizes of plastics, nano-
plastics (NPs) and MPs (herein referred as NMPs), which are defined as
plastic particles less than 1 pm and 5mm in size, respectively, are the
most concerning.

The major route of NMPs uptake in aquatic organisms is ingestion
(Roch et al., 2020). When ingested NMPs reach the gut, they seem to be
able to translocate to other tissues more readily as particle diameter
becomes smaller, causing tissue damage and inhibition of biological
functions (Browne et al., 2008; Jeong et al., 2018). For example, in the
marine rotifer Brachionus koreanus, NMPs induced size-dependent
negative effects and NP was shown to induce cellular membrane dam-
age by inducing oxidative stress, resulting in altered membrane
permeability (Jeong et al., 2016, 2018). In this aspect, considering that
the gut would be a first line of organ facing NMPs ingestion, it s likely a
primary organ to be affected by NMPs. The gut contains a diverse and
vast microbial community, the gut microbiome, which plays an impor-
tant role in maintaining biological h is of the host (El Aidy etal.,
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significant effects shown by MPs upon the gut microbiota, whereas NPs
induced stronger oxidative stress. Thus, we suggest that NMPs exposure
induces adverse effects by two different mechanisms in marine medaka,
which are associated with gut dysbiosis and oxidative stress related to
MP and NP exposure, respectively.
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GRAPHICAL ABSTRACT

Inorganic As exposure
Brachionus plicatilis Paracyclopina nana
As’ As" DMA % V'S ? AsV As'"" MMA DMA AsB
Speciation Biotransformation Tolerance

B. plicatilis Simple Efficient High

P. nana Various Complex Low
ARTICLE INFO ABSTRACT
Editor: R. Debora The toxicity of arsenic (As) has been reported to be different depending on their chemical forms. However, its
Keywords: toxicity mechanisms largely remain unknown. In this study, to investigate toxicity mechanism of As in marine
Arsenic speciation 0 zooplanktons, namely, the rotifer Brachionus plicatilis and the copepod Paracyclopina nana, bolites of As
Arsenic bioconcentration were analyzed by using a high-performance liquid chromatography coupled with inductively coupled plasma
Arsenate mass spectrometry with in vivo toxicity and antioxid P in resp to inorganic As, including arsenate
AM“" (AsY) and arsenite (As™). While As™ was more toxic than As" in both organisms, the rotifer B. plicatilis exhibited
Marine invertebrates stronger tolerance, compared to the copepod P. nana. The As speciation analysis revealed differences in bio-

transformation processes in two species with B. plicatilis having a more simplified process than P. nana, con-
tributing to a better tolerance against As in the rotifer B. plicatilis compared to P. nana. Moreover, the levels of
GSH content and the regulation of omega class glutathione S-transferases were different in response to oxidative
stress between B. plicatilis and P. nana. These results suggest that the rotifer B. plicatilis has a unique survival
strategy with more efficient bi mation and antioxid. P compared to P. nana, conferring
higher tolerance to As.
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with ROS depletion with the increased activity of antioxidant enzymes
in response to multi-walled carbon nanotube (Kim et al., 2016). On the
other hand, the increased of ROS levels and antioxidant enzyme activity
without in vivo effects was shown in B. plicatilis (Poljsak et al., 2013);
the increased level of ROS is responsible for not only the generation of
cellular damage but also often responsible for the beneficial effects by
maintaining a balance between oxidative stress and antioxidant me-
chanisms, as a result of hormesis. In addition, this difference in the
oxidative response would be a result of lineage-specific kinetics of
oxidative processes as suggested by Jeong et al. (2019) that rotifer may
have shorter oxidative cycles, compared to copepod. Taken together,
the optimal balance between oxidative stress and antioxidant systems is
necessary to prevent oxidative damage and it could explain our results
for the marine rotifer B. plicatilis. In addition, under stressful conditions,
more energy is required for the cost of homeostasis, DNA repair, and
defense. Thus, utilization of limited energy budget is critical to an or-
ganism for survival. In this regard, more activated antioxidant me-
chanisms of B. plicatilis are possibly associated with re-allocation of
energy budget from more efficient As biotransformation process, com-
pared to P. nana.

In conclusion, considering the diverse evolutionary mode of marine
invertebrates, understanding the evolutionarily lineage-specific mole-
cular responses in response to toxicants is critical studying in ecotox-
icology. In this aspect, our results clearly show the different As toxicity
and biotransformation mechanism in two marine invertebrates, B. pli-
catilis and P. nana. This study is helpful for a better understanding of As
toxicity and also provide a better insight into interspecific-detoxifica-
tion in marine invertebrates.
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ARTICLE INFO ABSTRACT

Keywords: To produce albinism in the marine medaka Oryzias melastigma, we disrupted the solute carrier family 45
CRISPR/Cas9 (SLC45a2) gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with a single guide
Marine medaka RNA (sgRNA). Selected sgRNAs were able to target a SLC45a2 gene as confirmed by genotyping and hetero-
Albinism duplex mobility assay (HMA). Of the survived embryos after injection, 54.2% and 60.0% embryos exhibited
SLG45a2

albinism phenotype by sgRNA1 and sgRNA2, respectively. Deep sequencing at the on-target sites showed dif-
ferent insertion and deletion (indel) mutation profiles near the DNA cleavage sites, indicating high efficacy of
producing SLC45a2 knock-out mutants by this method. Moreover, HMA at the potential off-target sites revealed
that off-target activity would be induced at a low rate, or not induced at all. This albino marine medaka will be a
good model for marine molecular ec icology in of diverse in vivo endpoints, and the appli-
cation of this efficient gene targeting method in the marine medaka would be useful tool for mechanistic ap-

proaches.

The genome editing is one of the fascinating tools to examine the
function of gene of interest in the genome. Of those tools, CRISPR
(clustered regularly interspaced short palindromic repeats)/Cas9 is the
most powerful tool. In fish, gene knockout (KO) and knock-in (KI)
systems by CRISPR/Cas9 have widely been used to examine the func-
tional role of genes of interest. To date, small fish such as Japanese
medaka and zebrafish have been widely used to target the genes to
study in disease model (Lin et al., 2016; Witten et al., 2017; Takeuchi
et al.,, 2017; Naert and Vleminckx, 2018) and functional genomics
(Fang et al., 2018; Watakabe et al., 2018), but they are mostly fresh-
water species, which cannot be used for marine molecular ecotox-
icological studies. Therefore, further study on small marine fish species
using CRISPR/Cas9 system is required to clarify functional roles of

size (~4cm), short reproduction period (~3months), and ease to
maintain in the laboratory condition (Kim et al., 2015; Kim et al., 2016;
Kim et al.,, 2018; Lee et al., 2019). To date, many studies have de-
monstrated evaluations on the effects of environmental stressors in-
cluding hypoxia (Lai et al., 2016; Wang et al., 2016; Lai et al., 2018; Lai
etal,, 2019), emerging pollutants (Kim et al., 2014a; Kim et al., 2014b;
Wang and Wang, 2014; Chen et al., 2015; Chen et al., 2016; Chen et al.,
2017; Cong et al., 2017; Yi and Leung, 2017; Chen et al., 2018; Liu
et al.,, 2018), ocean acidification (Wang et al., 2017; Lee et al., 2018),
and water-accommodated fractions of crude oil (Kim et al., 2013; Rhee
et al., 2013) with immune response (Bo et al., 2012; Dong et al., 2017;
Ye et al., 2018; Zhang et al., 2018; Cui et al., 2019), using this model
species. Thus, applications of CRISPR/Cas9 system are timely to com-

genes of interest in marine fish, particularly in marine enviror 1
issues such as hypoxia, emerging pollutants, ocean acidification, and
other various stressors.

The marine medaka Oryzias melastigma pc unique f as
a marine ecotoxicological model species: a sequenced genome
(~780Mb) and JBrowse (http://rotifer.skku.edu:8080/0m2), small

* Corresponding author.
E-mail address: jslee2@skku.edu (J.-S. Lee).
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)22 'y
in response to hypoxia, emerging pollutants, ocean acidification, and
others.

Solute carrier family 45 (SLC45a2) gene encodes a transporter
mediating melanin synthesis-related protein. Previously, antigen in
human melanoma (AIM1), a former name of SLC45a2, has been shown

h the role of genes of the defense-related pathways
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Table 4
Mutagenesis induced by SLC45a2 gene targeting.

Total Insertions Deletions Indel frequency
sgRNA1 WT 60,952 28 80 108 (0.2%)
ol 65,648 36 47,258 47,294 (72.0%)
2 60,109 0 57,838 57,838 (96.2%)
3 59,609 30,170 29,127 59,297 (99.5%)
4 59,924 334 59,477 59,811 (99.8%)
3 60,915 40 60,035 60,075 (98.6%)
6 63,702 4 63,602 63,606 (99.8%)
sgRNA2  WT 65,039 4 19 23 (0.0%)
1 62,195 20,463 38,713 59,176 (95.1%)
2 59.769 9495 46,437 55,932 (93.6%)
3 58,761 86 58,283 58,369 (99.3%)
4 64,177 5298 58,811 64,109 (99.9%)
3 65,575 88 65,360 65,448 (99.8%)
6 63,477 15 63,387 63,402 (99.9%)

fertilization (hpf) (Iwamatsu, 2004) compared to the mouse embryo
which occurs at 24 hpf (Kaufman, 1992). Likely, mosaicism can be
more easily induced in fish due to their faster embryonic development
as the genome editing, occurring after the first cell division or after the
DNA replication in the cell, would lead to mosaic mutation. Thus, to
overcome this problem, F1 progeny should be generated from founders
having germline mutation.

To verify mutation at two target sites in SLC45a2 gene, HMA was
conducted (Fig. 2A) with further sequence validation via targeted deep
sequencing near the DNA cleavage site (Fig. 2B and Table 4). Deep
sequencing would be one of the most valid method to assess mutations
in target sites, however, it would not be suitable for routine work as it is
not relatively cost-effective in an ordinary laboratory, compared to
PCR-based methods. Among those PCR-based methods, HMA has been
proposed as one of the most effective methods to detect sequence al-
terations induced by targeted mutagenesis (Ansai et al., 2014; Otaetal.,
2013). Thus, in the present study, HMA was conducted to screen mu-
tations in the injected embryos in addition to the sequence analysis for
representative embryos. As a result, multiple heteroduplex bands were
observed by HMA from embryos injected with Cas9/sgRNA1 or Cas9/
sgRNA2 RNP complex while a single band was shown in wild type
embryos. Consistently, we found altered sequences with different types
of mutations by sgRNA1 and sgRNA2. Accumulation of indel patterns
with sgRNA1 and sgRNA2 was shown near three bases upstream of
Pprotospacer-adjacent motif (PAM) sequences (5-NGG-3’ for Cas9),
suggesting that DNA cleavage was occurred at this site by Cas9 activity,
and subsequently repaired via error prone DNA repair mechani (e.g,

Marine Pollution Bulletin 154 (2020) 111038

editing can be used as an efficient gene targeting technology with a low
off-targeting activity in the marine medaka. Also, these albino mutants
can be useful to examine internal organs as one of in vivo endpoints in
marine molecular ecotoxicology and will improve the knowledge of
playing the role of interested genes in marine medaka.

Albino medaka mutants generated in the present study have clearly
shown the successful implantation of CRISPR/Cas9 technology and also
can be a useful biological resource. Albino mutants are a useful model
for understanding pigment cell biology, as genes involved in melanin
synthesis in fish are highly conserved with mammals (reviewed by Cal
etal,, 2017). Also, taking advantages of transparency of albino mutants,
more in-depth molecular approaches can be allowed to detect Cas9-
mediated mutation spectra of targeted nucleotide sequences within a
limited narrow window in developing embryonic stages due to the in-
creasing pigmentation in late developmental stages. Furthermore, ge-
netic modification incorporating the green fluorescent protein gene is
also likely applicable for in vivo imaging experiment that uncovers the
eye development. From this point on, although the marine medaka has
been widely used as a model experimental species particularly in the
field of marine environmental science to understand toxicity and de-
fense mech in marine or; in response to environmental
stressors (Kim et al., 2016), there has been limitation due to difficulties
in mechanistic approaches. Thus, the application of CRISPR-mediated
gene targeting technology in the marine medaka would allow to deeply
investigate mechanistic aspects of marine environmental science.

CRediT authorship contribution statement

Chang-Bum Jeong:Investigation, Data curation, Visualization,
Writing - original draft, Writing - review & editing.Hye-Min
Kang:Investigation, Data curation, Visualization, Writing - original
draft, Writing - review & editing.Sung-Ah Hong:Investigation,
Data curation.Eunjin Byeon:Investigation, Data curation.Jin-Sol
Lee:Investigation, Data curation.Young Hwan Lee:Investigation,
Data curation.lk-Young Choi:Writing - original draft, Writing -
review & editing.Sangsu Bae:Writing - original draft, Writing - re-
view & editing.Jae-Seong Lee:Conceptualization, Supervision,
Investigation, Data curation, Visualization, Writing - original draft,
Writing - review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial

non-homologous end joining, microhomology-mediated end joining).
These results clearly validate the induction of highly efficient Cas9
RNP-mediated gene editing in the marine medaka.

One of the concerning problem of CRISPR-mediated gene editing is
off-target activity which induces mutations at non-targeted gene se-
quences having one or more base pair mismatches (Lin et al., 2014).
Although we have taken care of this matter in designing of sgRNAs by
using Cas-designer and Cas-OFFinder to reduce off-target mutations
(Bae et al., 2014a, 2014b), we further conducted HMA at the potential
off-target sites for each of sgRNAs that contain mismatches in their
sequences (Fig. 2C), following the criteria described by Ansai and
Kinoshita (2014). We found that the HMA exhibited only a single intact
band with an expected amplicon size near the potential off-target site in
the genome of 0. melastigma. Previously, it has been reported that HMA
is highly sensitive to detect 0.5% somatic mutation in the mouse and
human cell lines (Zhu et al,, 2014). Also in the frog Xenopus tropicalis,
the detection limit of HMA was below 2.5% (Shigeta et al., 2016). Thus,
our results indicate that off-target mutations were not Induced by
S§RNA1 or sgRNA2. Although off-target mutation was induced, their
efficiency would be below 2.5% as mentioned in Shigeta et al. (2016)
Taken together, our results clearly show that CRISPR-mediated genome
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