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SUMMARY AND KEYWORDS

For a two—dimensional linear wave scattering problem, a new transfer matrix
incorporating evanescent modes 1s developed, from which the solution of a
scattered wave field over a stepwise topography is directly obtained. The present
method 1s shown to be capable of solving practical scattering problems with
complicated bedforms, for which application of the conventional methods has been
fairly limited. Highly accurate numerical solutions for sufficiently large systems are
presented, and the computational efficiency of the present method is demonstrated.
The interaction of bars in periodic beds is examined, and changes in the reflection

coefficient with increasing number of bars are illustrated

KEYWORDS :
shet Areh A oA Adad: o R wALE

water wave scattering; stepwise approximation; transfer matrix; evanescent modes;
reflection coefficient
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sub—matrices® (3.10) 2.2 Hodr} FEof & F2 dH A ¢ C+ FHLAE 0
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shute] Aol dish AP AL (3.9 ZFE 45 F QA olF (3.12) Eidss
BX =DX =X", (3.12)
4714
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Atk (317 1M A RET Tr Fold Qarge] dhat wialntsl Sabste] A4
oA Ame o Aaed Ag Qael ol s,

WHE (Transfer matrix) = |2 Fo]7 d@xzel Faa A5 o7 4L 4w
st AZo] PojA = Solg AUw AolHrh walAwe] 45 WRW
a7 Hn ol5o] geze] Agehd TeluA dhi A} ol vhAl %
Zabe Adade P54 e 5S40 el BN YEhlt Alfolth vl
Gdo] A ASos Fe AFel oa) Walsh wASA gkol WATL EA6HA]

ok EbEn] o] el (3.17)0] AUFIoE qyY B, S EATh

%A ©h. Devillard er al. (1988) o]dol &<gtsto] A7l ¢hds] 2 A
ZE3 HAutdo]lE zt= A Fo thall wide—spacing ZAPH S AEE9 1 EFF 3 A

Foll A 9+ HEARZE dojys= Zo]Ql Anderson localizations -3} t}.
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2 F A A

A

F oY Ao o]Foln AFe] B ATz

Kirby and Dalrymple (1983) 9]

Trench A el &g Zlo] Ut} 7|E A& FEse A2 a717F 47 diE
of ZF+dt direct inversion WHO R & A 7)ol o] Ao xdE FI E
A RS FA otk 18y 2 dATelM = v A A4S 29skal o]
£ ol&sto] Aol a&84dE FUAeE FAT A} F

X;:’I‘l“'Xl*'—‘f-RI_XZ_ N ;— :':S;r Sz]{iﬁ}.
3

X, =R X, +T,X;

XI =T} X; +R,X;
o]71-= AR 712
PrrRZ o2 peRyo] Mg
X5 AR F o7 ehfojol ),

A o F A Aol digistd

J
flo

LS ek

AR 2e

At o F gl B3 Ao
A Ao

27 wA MEE QARE R by S

(3.18)

X7 9 X;olv (3.18) #Z Ao el et nA5E

SRl X, o
Heistel X, 5 A

ot

-1
X; =(I-R3R; ) (RET X +T,X; ) =S] X +8,,X;,

X5 = (T +RSL) X+ RS X =SLX/ +8,, X,
X7 =TSLX] +(Ti8,, + R, )X, =814/ +8,,X7,
X = (RT+T{S;,3)X1+ +T78, X5 =8, X[ +8;, X7,

(3.19)

(3.18) 9] = el AAIet ArdB AL ZF2F 4719] 19 FHS QA= 7HAH o] Y
= (N+1) A3 do] At
+ + + + 7 - - - - .
:I:Sz,l Sz,z S2,3 S2,4:| 5 Szz[sz,l Sz,z Sz,3 S2,4 (3.20)

a3 (3.19A T& (N+1) 2 &g doln. F
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ol
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o A Aute] #HZHow WFPslo] wkaly RIX[ & WHETH B4 Auteld Hdshe T3t
o T, X7 24 BAAE whd o] Zlo] QIATE Hol A A A Egs A F
At do] dojdrt = AR Ao R MWst= FHIE T,T, X olal EA AWkl

F2 0w Agstt WATE RITIX o Bt} o] WIS AA AAMe mdaid 2

=8
(o

2 o] HEEEo AR Frste] TIRITI X, ©] ¥ UM HAMEEY] 4] %
o] 507 XPsh= WA RIRIT, X, & FA S ol st wkAbel Fapgo] &4

Anbel A Fgts] wAste] ol & T1¥ 19 EAElT

'Y F
T RRRIT X « |-RRRRT X RRRRRI A «| =T RRRRT X
T RT, X « | > RIRT AT RiR R X «| > T RIRT A,
RiX; « | =T AT RITX] «| > TT AT
- X
X=X X=X,

O™ 1L Al 2 Aske vhERbAt
a9 1ol FHA AdRke] #=5 x<x oA HA5or Aot e s gt AA

wHAbskE 9o ok

X7 =RIX +TRIT X + TIRIRIRIT X 4+ =

1

-1
R/ +T, (I-R}R;) RngJXf, (3.21)

o
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2 FgAst Ao gt o] W FHdE RIR; & A7]= 1®tE ool gt
(Greenberg 1978). AFsE W o2 T & Abgkylo] ZZFof st 84 ddS dyge
T A ol (3.19 09 FoA Aot FASA Ak 1A (319 R FoiR A A

Fe B oAReA RS BEALE 239 A4 At WZo] Fo] Bysi,

A @k ol W owAu mowAl ARE AAF R (m-1) Ao Aday
=[S;.8,. & olm Sl Vled wHom AN AL AHgdth Teln m A
Ao Agad R I TEE AH spgo] AW 73 5 Jow thal At

T mole] Agkel] widh AW AEAS (3.22)7F E

X =8, X'+S, X,
X _5;12X++s;12X— Xy
X3
X, =S Xi+S, X, = Xf =[s; S,‘J{;+ } (3.22)
X:=S! XS, X X'; il
X =R X' +T X X
X', =T X'+R X .

(3.22)4 2 5 %ol vlA AE X3 X, & olv] Fo R (m-1)Awe] Ay

d7 Q& =&3] dAlEe v S X, ol dARe] Fow ko] AW A
(m—1)Age] BE AaadL2 G A= o] 3 Zlo] (3.23)°]t}.
X;:(I_Rtns:n 1,2m 2) RtnS:H,zm 2X1++(I R-:ns;l12m2) T, X,..
(3.23)
_S;Zm IX +S;12m IX_

9 W or 3 A (m-1)Ade] Adade (3.24) 7 Ak
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+ +
sz Sm 1,i

+S . S* S =S § (i=1---,2m-2). (3.24)

m—1,i m2m1’ m,i m—1,i = m,2m-1

(3.24) el oln] Ak A (m—-1) Ao Argkedy} (3.23) 04 F3 Add P F
o7 YepAS FHESok stk EYA o ouirt Qe WA %3 Fihat
eRdE (3.25) 9 (3.26)°] Atk

m
=]
=
B
tlo

+8, 185200 ) X7 +S,

+ _
X (Sm 1,1 m— llSmZm 1

X, =S, X{ +S,, X, (3.25)

m—1,1

wir =18, 0,0 X + (T;S;azmz"'R:n)Xr; =S, X +S,.,,

X, (3.26)

Tkl F=oizl A o] WALE I F g nko] diito]l Ho APYRe e AbgtiE 5t
2] ok AQo|= Al (3.24) 04 & 2719 AtgrEE o] Alako] = QEl] wlEo AlAkE
T8} 71 g5Fo] dAeA FAaErk = (3.23)7 (3.24) A4 ST

wis S, 19 S
& Axtstd gk 2B E o] WS AMEEtd ol B Avor 7AW AF
ol Hal wEA WS FaES AAE ¢ QU "t o] AlARe A Wilo] A
57 ol ATt AAE Axtete A9 s Aate] A& 27 8 A
el we AR Es ek s wold.

(3.23) — (3.26)0lA AArtd & F Adke] HEshd dollA F3 (3.19) 9 T4
= 9T g Sk o] Wl ARl Wol Q¥ 3™ AL (3.23)] W
Ebd wkol o] N+l BFel disk Row 7|E ATl AHEE ar(N+1) B bl
direct inversion®l] HIgtH A Zo]= Zlojth. oy & ALEY] A olgol= # W

& 71E AT Guazzelli et al (1992)0] Hl&)] €53 AFAS zky 9t}
nt



oA @A W Fhe A

o

o
&
ke
ot
ey
2
1B
kit

2

S~

A Ee] disl] Fdst A daE 97 AalAe (3.23) — (3.26) ol A
N=0% digdstd dett A Al AdeAs dFuE aesy AW s R
o] & FAISHE wide—spacing TAME A Aol e AbdEE Fel Xdyst
Ji ks FHstal o]F # AT Wow Aot "ok 2ol flel 7lEst vpel o)
hybrid wide—spacing TAF AAME g4 €& 5 Utk T8y o] =S APHoR

Astesh ge wlo] gt
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2 oATeld Ad mye A3 s J1E £ P4 AR v ws
of ¥ 2 $54S QFsuA Ak o] AT vhsh gol B L 2349 A

o BEo AEES S5k S A 100719 A el Fad e s

2007074 Z7 XA 7]1E direct inversion ¥ @ E vpH ol CPU AQA|7HE =43t

Stk 1 1ol Ad® JRFF Y Fo e FaA = uAFY AeE YeRd e
71E W o2 = AlAbAIZRe] Ui Hol] Ay A8Ado] gle A7HA dide® Asksitt
1. AA F Aol sk 7)€ direct inversiond} ¥ R & o] CPU AARA 7L
M N No. of CPU time (sec)
steps modes unknowns Direct Present
Inversion method
0 200 0.10 0.00
1 400 0.76 0.02
100 5 1200 32.57 0.03
10 2200 243.38 0.16
20 4200 1701.60 0.76
200 40200 - 626.61

¢

— ‘ denotes no result.

AdFT 4 fol =23 AW Hol 19 T=F APl AT WAEE ALter] SlE

Porter and Staziker (1995)7} 173t %3 (4.1) = AF&3FA T}
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T W7 0'Afg >0 Agole AP F4 wow wal 1 kol I9F
T4 by wrel o]&th Chamberlain and Porter (2006) % -&
71 flall oy s AAlE nHd SAARZAR S ARRSEAT. 1" 20 Ak =

o’ Afgol AT Axkst PARES LERYQIT

0.25

0191 M=100
11----- N=10
0.05 - | —— N=50
| |+ + +Porter
0 | | ] ] T | I I ]
0 2 3 4 5 6 7 8

99 AEe A FAeln F2 A FAAe AR AFad 107E AREE

5 == Al dal 100782 A

o] B Ak AMEE Sl 198 e A7) % = Porter and Porter (2000)7F A3 A A

A A BDE 4EE WHeR F3st dytoln] ddsolty. ZEAP0] FHACE

3% A 1 JNFE Selok ot o] AP # WY AULE

wo] F 3 ooty XA round—off 2= Zol7] Y&l Wi EFES AFEEIS
X

ovf olate] BE FAUPAAE o A&
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AT A Pe| oot gEAPS W2 AS4xpEo] £ o] Jhd @A FE 9
A& 3 Ao tidll Davies and Heathershaw (1984) 7} 8] R3dAd7} xS 2
AlSEE T O AES (4.2) 2 Fo Rt}
h(x)=h,—bsin(lx), 0<x<2zn/l, (4.2)

AZIM hy= AFe] Hat A0l S AT U, b AR AFE R 12 A
o] gholnk. s T
(1992) 0] astalar v A gel et 42 (4.3)°]t
h(x)=h,—b[sin(Ix)+sin(mlx)], 0<x<2mn/l, (4.3)
AZIM m - A I F2 9 wlolth & Aol A4 ASE shue] dwo R
AT AR AFE TE AR 3

2 ¥ 2 gkt

r
(=
o
ok
Hdo
ot
v
o
1o
~
>
N
)
O U
2
=
o,
=
=
[

4

f

% 2. AT AF A ALE EsE

h, b 27z/l
Bed type Case (em) n m
DH1 156 5 100 2
Sinusoidal DH2 156 5 100 4 -
DH3 31.2 5 100 10
Gla 2.5 1 12 4 2
Glc 4 1 12 4 2
. . G2a 2.5 0. 6 4 1.5
Doubly sinusoidal Goe 4 0.5 6 1 15
G3a 2.5 1 6 4 1.5
G3c 4 1 6 4 1.5
230 AUEE AFe] A8l A/ MTE F7HAA FHEAS FESIT ® 32
G Fdukel DH2 tisl] wiAbaf F3Fo] Fugks Kol 2k/I=1% 2] g X4
$2 dehjgch ® wEo] uje B mASE OE 5 YSS wol7] 8 A AL
= 160070} A7/3E 200707kA] 2H2E S7 A AT ezl o' Al ol dis] o
sol A5 BW FAAN ARES AP goz Ak A £ o F1Y
o] 5 Al T7HAI7IH A shute] gho = SHekA "t



¥ 3. ¥ 29 DH2 AyeA g7 S7kel uE g A

M N Ky M N Ky
steps modes 2k/I=1 2k/I=2 |steps modes 2k/I=1 2k/I=2
0 0.74161 0.07987 0 0.74606 0.08167
1 0.74113 0.03805 1 0.74367 0.04132
10 0.73797 0.05420 10 0.74127 0.03760
100 30 0.73751 0.05391 | 400 30 0.74072 0.03967
50 0.73746 0.05410 50 0.74056 0.04008
100 0.73744 0.05415 100 0.74052 0.04005
200 0.73743 0.05417 200 0.74050 0.04005

M N Ky M N Ky
steps modes 2k/l=1 2k/I=2 |steps modes 2k/I=1 2k/I=2
0 0.74669 0.08180 0 0.74700 0.08184
1 0.74399 0.04172 1 0.74413 0.04190
10 0.74151 0.03718 10 0.74159 0.03708
800 30 0.74113 0.03789 | 1600 30 0.74125 0.03752
50 0.74100 0.03833 50 0.74117 0.03769
100 0.74088 0.03866 100 0.74108 0.03795
200 0.74086 0.03865 200 0.74102 0.03809

@ gy Aol tlg Davies and Heathershaw (1984)7F A|Ag Axpi= A 2
Z%o] WRAEEA] ¢koror}t $4& A5l O Hara and Davies (1993) ¢} Chamberlain
and Porte (1995)°] A}ell& st w7 o] FZollA Astgl on o]= A3
Aol Hu 7M7) wiiEe] 5 EEo]l AEAelM 9 Swetvta FAESAT o]
=] ofF-E Hrksly] & A o o 5 desks 2719 X9l s
At 18 38 A 3 49 100719 Ay 1070 dFI32 A d9E
Adow Yttt 2 1"
A== FoFAel sddEes Ho o] Ay Ageli= 100749 At 1074
o FuE ARESHH TR AULE Zte ZoE HukEd. auy #98] 2k/1=2 °lA]
221 F&o] dojuA] de= & 5 Atk YA o] A BF

wol O’ Hara and Davies (1993) 9] ™3} ZAME A 2 % P25 AlLJshd fAFs
AyE Hols o FAET. uit Ao It Srbetd Al S dAE

Hol: o] Fugvh e How ok FAAT
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— 0.8
b) DH2 \
=12 -
N ~ 0.6
2.6
P
200 VY Y
o 100 200 300 400 [~ 0.4
T F02
+ +
A |
0 T T T T [ T T T T [ T T T T | T T T T | | T T T T | T T T T | T T T T | T T T T 0
0.5 1 1.5 2 25 05 1 1.5 2 2.5
0.8 4
1 ¢)DH3
0.6 -
K; 044
1 0 200 400 600 800 1000
0.2 - x {cm)
Thlet X N MR S fo 4+t F
0 I A A I L A B
05 1 1.5 2 25
Zk/l
% 3. %20 9 Fdat Al gish HhARE Al W
% 394 713+ Davies and Heathershaw (1984) 9] S=8]Rg A3 Aylol Zu}7]

T aEERo]l BSA A A e oy sAddEdNe syddEY F

(b
o

Irt
1o
=
=
o
o
td
aly
N
ot
o
o
=
1o
>,
-\
Hl

Gy glon, shie] ATl ol
Shge e F oA FAsE FPEel 9of o) W 7 wgat Fe wHgel W m

ghol EATE o) Qs BAAA FFHo| WAlsk Fukrulsh 2k/1=(m—1) Q) AF}

e

FZelAl= “difference resonance” b AL 2k/I=(m+1) TFTF FLoAE “sum
resonance” 7} Z}zF @HABC} (Guazzelli et al 1992; O' Hara and Davies, 1993).
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------ 10, M = 400 N =50, M = 1600; 4 -+ 4 Lab Data
’ a)G1la . b) G1c _ 08
] w5 F I
_ Q.2 —
0.8 5_3_ — 0.6
1 i + 24
DB_ _H_ .U'S | I I NI I B
0 10 20 30 40 50
KRU4 i e H 4 x {cm) — 0.4
. _ '4'- L
02 4 i LHL +¢¢ - 02
U Il[II 'I[III'IIIII'IIIII'IIIII'IIIII'IIIl[]IIl _0
0 05 1 15 2 25 3 356 4 0 05 15 2 25 3 35 4
0.8 — c) G2a . d) G2c 095
w-z— B
0.6 — 5_3._ 0.2
= L
: Saliiiiii.1, - 015
] 0 10 20 30 40 50
KRD.4— x{om) -

4 — 0.1
021 % - - 0.05
0 e T R RARESRAREE LSRN LARES Ranns MY
0 0.5 1 1.5 2 2.5 3

3 e) G3a f) G3c 08
. -0
81 -
- £3 F t — 0.4
0.6 EL:;-_|.|.|.|.|.
K 1 0 10 20 30 40 T B
0.4 — x (om)
J — 0.2
e HN\\/M | _
D T IIIIIIIIIIIIIIIIlIIIIlIIIIl IIII'Il ||1||r|||||r|'|/_|\ir||‘_""rr|'| 0
0 0.5 1 1.5 1 1.5 2 25 3

*/1
O 4. Aolsk F ) AAad AFAE (Guazzelli ef all, 1992) o o gk HEALS
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AR T 3P A old m=1.5 BFele 1% 4 o — Dol & F AKX
Fét difference resonance’} WA ST AGA S oko] TIFl 3oA 9} Zo] Al gl
& 100709 At 1070 AFak= Adret dys gAdow 40070 A2t 5070
5 AR A Ado® Yehdiith AbE Eole] HIQl b/h 7 2 BF C®

g o

12

o

=
T
=

54

I

4 a)= 4 b)oll vl WRAREo] ATh REARE 919 olgd AT T &
A2 AR ol I¥ 40)% 4e)E Huetd AAZAL Z 4e)7F B =

I8 55 AdA e 3t wide—spacing ZAFE AAFSE WEAFS-Z Devillard et al
(1988)> AldA el B Aduto] of7]o] EAste= o /a7t 4438 = SEe
ZdolE zt= EW3dt A4S it at9dth. 7 % O’ Hara and Davies (1992)% 7t
At Fol7t dld 49 0.02v] Rt 2o Devillard et al7b AFE3E wide—
spacing <AFS Huh (Peg FHsl SALR vk e A 22 diE Bilval gt
Tk AAFAE A AFoAE 919 F O ZAPE ARESE Ay G AAVH
Avel Z zolE Holx ek HIAY AR Jig Wstel wE  wide—spacing
A AUEE BA87] fall sABAE W s AFE 2dE] FAAYE
TR, " belle= Aeld 37Hel wWwlel  ARRHSIY (7] EFEM:
FFAAZIHE ujsta ddslel &Fst ZAPH O E = wide—spacing ARSI}
A ARG E QAT o] Altel A A Fate] Jigr= 50702 skl ou A Jigs
dejsto] ol& 1%k WhARE ] WStE R A A=tk IHeA #1Es] & Qo]
Ao F7F kst 7 FAPHOE AAbe Adbs A E Ak FdE Bl o=
At F7F F8s] @A 7dsd wide—spacing A R o]

A
zolgd & v @d @S Fo AdS Fox A Adske d° Ao 2Ud=
&

=

o

Aty gy oAl AdxskAnt 19 5 EFEMRe] s AZAE F3 AR oA =
SRS AdE 7T T Ale Beisal jlh

ojm] SellM Zl&d whep o] Fojxl At
Twel e AeREs getal o] A¥E U YHex o] Adtstd g

ALY AE M o AN @ A Dok old 1F THS AHEE P
ARE 7h AFAA A A o] FEghe] o€ Ak Ao HiE B4



7FeskA st

— — EFEM; —— PA; ----- ws
DH2 (M = 1600, N = 50 b) DH2 (M = 196, N = 50

0. - 2 PH2! ) ) DHZ( Y o

0.6 - - 06
Kg 0.4 - 0.4

0.2 - - 0.2

-
0 I I T 1 [ I I I 0

o]Z Holuxt “DH2” ¢ “Gla” F+ Aol ths] JF3 10705 AFE3star o] A H>

1)) AFER T gor shte] AFEE 10079 AR el

)

2" 6 AT 2FCl o B9 Wb A AF |p| ola e A%
QAL x> -0 FE] Aoz e wf A4 glolth 1Y 6al 9 AF AFelA

A Y AT aEd FeR 4 A (Es sl dis Aabe AbeEE o



ARSI F3g RS and TS QA F7)0] thdt wstolu),
a) 2 bars b) 4 bars (DH2)
05 . 0.8 , 1180
B f f’ ~ |llII 'I 'III flll / |IIII III 'II M
) B ."I i ."l / | / ."I ©
e 047 06 |/ /1 /] 90 €
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rlo

%S RP and TF &= (3258 (3.26)0% Asda aid AFF Abwh

(3.18) & fAFsHAl .

X, =RfX1+ +T, X, X,

Do =T X R X K| g ég]{ X } (@.4)
X =RX 0 + T, Xy, Xior X1
X2+01 = TJr)(1+01 +R; Xgm X2+01

(4.4)0llA WhAbRe] A& Wy X7 nE e AFEAE SFSeA 2= Ak X9

X;, ZFE Aabe golth (4.4)2 E (4.5)F deth
~ ~ ~ o~ -1 ~ , ~ ~ ~ o~ -1 ~
X, :[RHT](I—R;RI) R*ZTI*}XI*+TI (I-RiR;) T,X,,. (4.5)

abst X b NS ARl Agste] @ Wbk FoAle gEes wol gtk

¢

R} & ©] 7kl 2 ARRelA] dabg glela yexs T oo Ao thERbAbe
o A Zolth. 79 6aclA A2 A F e AFERE AYE Aol

ojt}, 1811

M

% +E EFE ShHY AL R o3 He BAL TEukie] a4

=4 4 (45)] BASE F AR Sdelth /=1 RN 94 Aol

Hol A9 g AFo] Aol wAtgol gl Hrk 2k/I=2 FNE A 2 FFo]
SAst A% A7 0o A Al Lok ARG MRS ofF HopA |
A,

ek FAFEHAl R 370 AlFel tiE ST 2 (3.23) - (3.26) 07 A4S mpAutow
Folx 4708 AbFel ek AXbE S8 919 A5 Al ARgERSiTh e Fol
WA ek wabst WE] X oAl A E] (4.6)0] "t

le = (S;r,l + Sg,l SIJ )Xf + S;,l SZ,7X;01 (4.6)

1714
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S.,=(I-RiS;,) RIS, 8., =(I-RiS;,) T.. @)

YAt7h FSomRE @A 1 4% WAt At FF (4.6) HH =4
go] EASA BA BH(X,, =0). I3 6b X 29 ‘DH2” Aol <8 wkal&olx
7IE Al MEE ARETE FREC] HE 4709 AR AFol FAEHIL A
F7he T%g A sta 939 FE FA stk F 93 FHE side lobed] S
AA F7kete ol (4.5) ] F AL AR AT Aoltk. AlFe AFrE Fhskd

TGl o AR AV s oo Q& F WA A7 FA AXA
ok 2k/1=2 FZolM WhAREI o]F s T AL A7 BT 0o drh

A s AFFREE el o] dAol Al FTlel AlEEH Al 2 FEHS A9

1o

O" 6de ‘Gla” B ol F dHe iyt THE ARAG tE RhAbE R
a" 6cE o AR A 2E AAS wAEolth AF FAste] spgnvt 20lmw F
%3} difference resonance?t 2k/l=1°14 Zo] a4 vebA ot webs o] F
AEs TEsI7E ofdah 19 6acl wlE] 1" 6cold F FFHY I A7 AAGH
olgd A& & F Stk o] ol st AFFEAFC o WM Aol =

FEst OdelA V|EE 23 spe Ao sfidEi

doldt Adu T A “G3a” o WigE & R d3E 1% 6edt 1¥H 61
YR SltE o714 A ak spgel= 162 FAHAQ 71 $352 0.59 1.5 #1218t
b o] AF d¥ol By Hieta A AA whARER kel @Al o

Bgste] F 32 329 o)%o] WA T,
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Faol Wate 22 AFelA AFel o8 APHE AP A"SE ] 9
E e MR dSyES Akl o] el
HAEZA Ao tiek gge] AAlE ARkl ni
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1. Introduction

For a varying topography in which the change of depth within a
wavelength is appreciable, reflected waves can no longer be neglected,
as waves are scattered by the undulating bottom. This interaction be-
tween surface water waves and periodic bottom topographies has
been studied extensively. The main issue has been focused on the
Bragg resonance reflection of incident waves when the surface wave-
length is about twice the wavelength of the bed profile (Mei et al., 2005).

When the bottom is rapidly varying with steep slopes, the evanes-
cent modes must be included to predict wave scattering accurately.
These modes represent local effects, but through mode coupling, they
affect the propagating modes. The inclusion of evanescent modes
gives rise to an additional set of coupled equations, from which the ac-
curate higher-order Bragg resonances and the clear shift of Bragg peaks
towards lower wavenumbers are obtained (Guazzelli et al., 1992;
Mattioli, 1991).

The stepwise approximation, in which a varying bottom is approxi-
mated by a series of steps, has proved successful for wave scattering
problems. The solution of each region of constant depth in the approx-
imation can be expressed as an eigenfunction expansion. To determine
unknown coefficients in the expansion, matching conditions are used at
every boundary of the intervening shelves to ensure continuity of the
fluid velocity and pressure over the depth. For an accurate solution,
the number of both steps and evanescent modes should be increased
to a sufficient level. By increasing the number of unknowns, a more ac-
curate solution can be obtained, but large amounts of computational ef-
fort are also required. Since the simple direct inversion of a matrix uses a
large amount of memory as well, the conventional method is not suit-
able, especially for a large system of equations. In spite of several efforts

http://dx.doi.org/10.1016/j.coastaleng.2014.01.013
0378-3839 © 2014 The Author. Elsevier B.V. All rights reserved.

to overcome this difficulty, the limitation on increasing the number of
unknowns has still remained. Therefore, a new method is needed to al-
leviate the limitation appreciably.

Devillard et al. (1988) devised a transition matrix method based on
both the scattering matrix by Miles' (1967) variational approximation
and the wide-spacing approximation by Srokosz and Evans (1979).
The propagating modes on either side of a shelf are related to a 2 x 2
transition matrix expressed in analytical form. Then, the scattering
property is obtained by successive multiplication of the transition ma-
trices corresponding to each shelf. This idea was adopted by Evans
and Linton (1994) to find the scattering properties in a transformed
domain by a conformal mapping technique. O'Hare and Davies (1993)
applied the plane wave approximation, which is a simplified version
of the wide-spacing approximation, to predict the scattering of periodic
bedforms. Their model provides good predictions for sinusoidal beds,
but poor predictions for higher-order resonances of doubly sinusoidal
beds. This strongly implies the inclusion of evanescent modes in the
scattering of complicated topographies. Guazzelli et al. (1992) devel-
oped a hybrid wide-spacing approximation by subdividing a bed into
smaller subsystems of steps to enhance the ability of solving fairly
large linear systems with a reasonable amount of effort, although it
somewhat sacrifices the accuracy of the solution. Coupling between all
wave modes is taken into account in each subsystem, but the subsys-
tems are not coupled by the evanescent modes. Since the solution is af-
fected by the choice of subsystems, they indicated that an adequate
subdivision into subsystems must be selected. Rey et al. (1992) present-
ed both experimental and numerical results of the propagation of nor-
mally incident waves over a rectangular submerged bar using the fully
coupled model by Takano (1960) and Kirby and Dalrymple (1983)
and the approximate model by Devillard et al. (1988).
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Another line of approach to successfully predict linear wave scatter-
ing is based on the mild slope approximation. After Berkhoff (1972)
introduced the mild slope equation, several extensions have been
made aiming at steeper slopes and more complex bed shapes. The
extended mild slope equation by Kirby (1986) and the modified
mild slope equation by Chamberlain and Porter (1995) produced accu-
rate prediction for sinusoidal beds where the mild slope equation failed.
Massel (1993) and Porter and Staziker (1995) presented multi-mode
extensions to include additional evanescent modes to cope with steeper
slopes. Athanassoulis and Belibassakis (1999) and Chamberlain and
Porter (2006) showed that a sloping bed mode added to the multi-
mode extension improves the convergence rate of the approximation.

Recently, Bender and Dean (2003) applied the stepwise approxima-
tion to study wave scattering by 2-dimensional trenches and sills with
sloped transitions. They focused on the effects of sloped transition on
the wave scattering and found that the sloped transitions led to a reduc-
tion in the reflection coefficients. Their numerical results of the stepwise
approximation were compared favorably with those from other shallow
water models. In a numerical experiment, Bender and Dean (2003) used
at most 40 steps and 16 evanescent modes, while Guazzelli et al. (1992)
used 60 steps and at most 4 evanescent modes. Consequently, a limited
number of unknowns have been used in the approximation, and
solutions have been compared mainly to available laboratory data. For
better understanding of the stepwise approximation, the accuracy of
the solution has to be tested with increasing unknowns to a sufficient
level.

Since most of the computing time in the conventional method is
spent in inverting the matrix of linear equations, it is crucial to find an
effective way to use a number of smaller matrices to replace the one cor-
responding large matrix. To use the smallest matrix for the inversion,
our aim is to construct the solution by summing all scattering matrices
of individual steps. To this end, a transfer matrix is developed not only
to significantly relieve the limitation of the previous models, but also
to obtain the full solution of the two-dimensional linear wave scattering
problem without any restriction except for the stepwise approximation.
We present highly accurate numerical solutions for wave scattering by
variable topography and reassess the results. Extensive accuracy tests
of the solution are performed, and for multiple scattering between
bars, we examine changes in the reflection coefficient and its contribu-
tions with increasing number of bars in periodic beds.

2. Eigenfunction expansion method

For linear water waves with angular frequency o, we seek a complex
velocity potential ¢(x, z) exp(—iwt). A smooth bottom connecting two
regions of constant depth is approximated by M consecutive steps with
(M + 1) horizontal shelves. Although the length of the first and last
shelves may not be finite, the intervening shelves are of finite length.
For a better approximation to a given bed profile, the number of steps
should be increased.

Because the depth h; over the ith shelf (x; _ ; <x <x;) is constant, the
solution can be expressed by an eigenfunction expansion in the follow-
ing form:

¢ = (pi' e+ pr e ) coshkip(z +hy)

+> [sfje_k'*f(x_""‘) + s[je"‘-f("‘_x) cosk; j(z + hy), (2.1)
=

where the propagating mode amplitude pi~ and evanescent mode
amplitudes si; are to be determined, and the superscript + denotes
the wave propagation direction. k;; are the solutions of the dispersion
relationship.

0’ = gkio tanhk;oh; = —gk; ; tank; ;h;. (2.2)

The eigenfunctions are given by
fig = coshkig(z+hy), fin= coskj(z+hy), (2.3)

which form a complete and orthogonal set for the interval (— h;, 0).
To determine the unknown amplitudes in Eq. (2.1), the matching
conditions are imposed at each boundary separating adjacent regions.

{ b = dig
0d; 0y q;X=x;, —min(h;h; ;) <z<0. (2.4)
ox  Ox

For computational purposes, the infinite series in Eq. (2.1) is truncated
into a finite series of N terms. Substituting Eq. (2.1) into Eq. (2.4) pro-
duces a residual due to the truncation. Following the method of weight-
ed residuals by Kirby and Dalrymple (1983), we have 2 (N + 1) linear
algebraic equations from the matching conditions at x = x;.

X=X

0 0
/7}] d)if?.,jdz = /7}1 d’iﬂfis.,jdz

0 ad)i d _ 0 a¢i+1 d
/ etz [, Serrha

i+1

hs= min(h;, by ),

i

(2.5)

where ff; denotes an eigenfunction in the shallower shelf, and f} is that
in the deeper shelf. We make use of the shift of the integration limit in
the velocity condition using no contributions from the vertical wall of
the step.

Evaluation of the integrals in Eq. (2.5) gives a linear equation system.
In this study, the unknown vector X; is regrouped into two sub-vectors
of (N + 1) elements.

X T
Xi = |:X41r :|7 )<1i = {piiasi%l7w7st} . (26)

i+1
Then, the linear system can be written in matrix form as
AX;_; +BX;+CX;, =0, (2.7)

where matrices A;, B;, and C; have four sub-matrices of order (N + 1) el-
ements.

_ [0 A _[Biy1 Bip Gy O
Ai_[o 2 BBy Byt G7|c, o] (2.8)

For M steps and N evanescent modes, 2M(N + 1) linear equations
are formed. When the number of both steps and evanescent modes is
increased for an accurate solution, the number of equations to be solved
increases much more rapidly. To circumvent the difficulties in solving a
large system of equations, we present a new method in which the solu-
tion is built using the individual scattering matrices of each step. More
importantly, we demonstrate that the present method is another way
of exactly solving the scattering problem of a very large system of
equations. Table 1 shows the computed CPU times of both the conven-
tional direct inversion and the present method for two wave inputs. It is
evident that the present method drastically reduces the computing
time, especially for the case of a large number of unknowns, in which
the direct inversion method is impractical as shown.

After obtaining all velocity potential amplitudes, surface elevation
can be computed from the dynamic free surface condition. From the ve-
locity potential representation in Eq. (2.1), the reflection coefficient K
and transmission coefficient Ky are given by

p1 | _ |para | coshky1hpgs

Kp="PL1 Ky =
R pi] "= Ip{|  coshk;h,

(2.9)
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Table 1
Computed CPU times of conventional direct inversion and present method for two wave
inputs.

M steps N modes No. of unknowns CPU time (sec)
Direct inversion Present method
100 0 200 0.10 0.00
1 400 0.76 0.02
5 1200 32.57 0.03
10 2200 243.38 0.16
20 4200 1701.60 0.76
200 40,200 - 626.61

‘~’denotes no result.

3. Transfer and scattering matrices

In this section, we begin by finding the simplest solution for the scat-
tering problem of a single step and build up towards a more complicat-
ed one for a multi-step. As mentioned, we shall show how to construct
the transfer matrix of a multi-step using the pre-calculated scattering
matrices successively.

3.1. A single step

In previous studies, shelf lengths of a single step were assumed to be
infinite so that only the propagating modes of incident waves coming
from x — =+ e can be encountered around its depth discontinuity. How-
ever, we consider a more general case in which the shelf length can be
finite and incident waves including evanescent modes are given at the
both ends.

Combining the incident waves in Eq. (2.7) and transposing them, the
equation can be rewritten in the following form

B,X, =D, X, =X", (3.1)
with

B B A C
B, — | Bun 1,12} D :_{ 112 1‘11]: 32
1 {31.21 By | 1 Aip G| (3-2)

[N g Xt
o[ x5}

The elements in both B; and D; are computable from inner products
of the eigenfunction and weight function. As an example for h; < hy,

from the velocity matching condition (m = 1, -, N + 1), we have the el-
ements of the matrices B; and D;.
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The pressure matching condition (m = N + 2, -, 2N + 2)
produces
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where j = 1, -, N. The shelf length is given by Ax; = x; — x; _ 1, (i
=1,2)and

- m—1,
| m—N-2,

It is evident from Egs. (3.3) and (3.4) that the evanescent modes are
coupled with the propagating modes. Particularly, the shelf length af-
fects the evanescent modes of the incident waves by exp(—k;;Ax;),
which eventually has an effect on the scattered waves. When the length
is large enough, all contributions of evanescent modes virtually vanish
in Xi". On the other hand, when the incident waves are exclusively
given by propagating modes as in the plane wave, the same result hap-
pens to X1, even though the shelf length is not long enough. Thus, for a
step of infinite shelf length, incident waves are equivalent to plane
waves.

By solving Eq. (3.1), the scattering matrix of a single step S; = [S1 S1']

is obtained.
_ + o + o " +
xlzs;lnlxlz[‘ﬁ TLHXL}E S11 S {Xl_}. (3.6)
T Ry J1X S12 Si2| Xz

The matrices Ri and Ti denote coefficients of the reflected and trans-
mitted waves, respectively. For a single step, the transfer matrix is inter-
changeable with the scattering matrix. We can see from Eq. (3.6) that
multiplying the transfer matrix by incident waves yields the solution
of scattered waves. Furthermore, the transfer matrix reflects the nature
of the system regarding topographic features and wave properties.
Since the scattering matrix exists even for a special step of equal
depth, where only the transmitted wave is formed, By ! always exists.
When 1 and 2 are replaced by i and i + 1, Eq. (3.6) gives the scattered
wave equations of the ith step.

When the solution X; of Eq. (3.6) is substituted into Eq. (2.1), it can
be observed that the produced evanescent modes decay exponentially
away from depth discontinuities. If a shelf length is so large that all ev-
anescent modes are negligibly attenuated inside the shelf, only the
propagating modes arrive at the neighboring step. Devillard et al.
(1988) adopted this wide-spacing approximation and applied it to
every step in a stepped bed to study Anderson localization to water
waves over a random bottom.

m<N+1

m>N+1 " (33)

3.2. Two steps

In a bed with two steps, a multiple scattering between the steps is
formed, which is absent in the case of a single step. Linear equations
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for two steps are directly obtained from Eq. (2.7), and they can be given
by the scattering matrix form of each step.

X7 =R{X] +T; X5 Xy
X =TiX] +R X, e o (x)

2 172 28 = 18 3.7
X2 :REX;+T2X3 = X%r [SZ Sz } X3 ( )
X5 =T3X; +R3 X5 X3

Here, the incident waves with amplitudes Xi” and X3 are given, and the
other amplitudes are to be determined. Similarly to a single step, the un-
knowns can be expressed by the transfer matrix, S, = [S3 S5 |, acting on
the incident waves. It is evident from Eq. (3.7) that each of them has
four sub-matrices of order (N + 1).

T S
S;=[Sa1 Siz Sis Sia| i Si =[S Sz S5 Sl (38)
By solving Eq. (3.7) straightforwardly, we find

Xy = (IFRERY ) 7 (RETIXT 4 T5X5) = S35XT + 855X,
X3 = (T7 + Ry S33) X7 + Ry S33X5 = S3,X{ +8,0X5

X} =T3SEoXT + (i85, + R3 X3 = SLaX] +83.X

Xi = (RU+T7S35)X] +T78,5X5 =S31X] +5,,1X;,

where I is the identity matrix of order (N + 1). The scattered waves
propagating away from a variable bottom profile are X;” and X3

By extending the argument of a long wave by Mei et al. (2005), the
physical features imbedded in Eq. (3.9) can be explained. For simplicity,
we examine a scattering process due to a right-going incident wave
only. When the incident wave of Xi~ arrives at the first step x = x4,
some of the wave energy with a wave T{ X{" is transmitted into the sec-
ond shelf, and the rest, R{ X7, is reflected. As soon as this transmitted
wave reaches the second step, it undergoes the same scattering process:
some energy T3 T X{ is transmitted to the third shelf and the rest,
RS T X7, is reflected back toward the first step. Upon reaching the
first step, the back-reflected wave is again split into reflected and trans-
mitted waves to produce Ry Ry T X and Ty RS Ti X', respectively. This
back-and-forth scattering process is repeated infinitely in the second
shelf, as shown in Fig. 1.

Summing up all of the left-going waves in the first shelf, we have

X7 =R7X] + T{R3TiX] + T{RIRTRSTX] + -
_ {Rf +T; (1-R3R; )’Hgﬁ}x*, (3.10)

where the Neumann series identity is used in the case of a linear matrix
RS R; with norm less than unity (Greenberg, 1978). Similarly, the other
scattered wave amplitudes can be obtained. When the response of the
left-going incident wave is included, it results in Eq. (3.9). It is now

h

T, RIRRIT AT « | > RIRGR IR T XY
T RIT X « | > RIRT AT
RiX; « |=2TX

- X

'y

evident that the mathematical solution in Eq. (3.9) is the sum of the in-
finite series produced by multiple scattering.

3.3. Multiple steps

Following the procedure in the previous subsection successively,
the scattered waves for a bedform of m steps can be easily obtained.
The transfer matrix of the first (m — 1) steps is known in the previous
computation, as is the scattering matrix of the mth step. Hence, this
can be essentially treated as a multiple scattering between two scat-
terers, with one being composed of the first (m — 1) steps and the
last one. Then, for a given m steps, linear algebraic equations can be
written as

X7 =Sp_11X1 +Sm—1.1Xm

+ - — X
X3 = S.m—l‘le+ +Sn—12Xm, Xlw
: X; N
X1 =Sh1am X +Smioms X = 1 %2 V_(st 7] { i }
+ _ ot v e - :
Xim = Sm—12m—2X1 + Sm—12m—2Xm> X ml
X =R0Xo + TpXoiq, Xt

X;H = TTHX:»VI + R;X;H'
(3.11)

As shown in Eq. (3.11), the unknown wave amplitudes are weakly
coupled because of the first (m — 1) steps, where waves in each shelf
are expressed in terms of X;” and Xj,. As soon as X;, is expressed by
the incident waves Xi” and X;, . 1, all elements of the first m — 1
steps in the transfer matrix are readily obtained. Solving the third and
second from the last in the simultaneous equations gives

_ R -1 _ -1 —
Xm = (I_Rmsm—llm—2> anS;—l.Zm—ZXT"‘(I_R;Sm—l.Zm—Z) TmeH

—cr + - -
=Snam—1X1 +Smam—1Xmi1-

(3.12)

Substituting X, into the equations, the first 2(m — 1) elements of the
transfer matrix are obtained.

Sr;,i = 51;71,1' + SI;f],iS;,mel? Smi=Sm-1iSnam—1 (i=1,2m=2).
(3.13)

The left-going scattered wave amplitude is given from Eq. (3.13) by

X0 = (Snoit +Sn11Smam 1 )X +Sn 11Smam Xt (314)

Using X;;; computed from Eq. (3.13), the right-going scattered wave am-
plitude becomes

X;;H»l = ’ITnS;L,meZXl+ + (TJrrnSr;,mel + R:n)xr;+1 = S;‘mezr + S;‘merEJrl-

(3.15)

A

RIRRIRIRILX | = TRIRIRIRT XY

RIRRITX! «| > TRIRIT Y
RIT'X «| > LAY

X=X

v

xX=x,

Fig. 1. Multiple scattering with evanescent modes in a bed of two steps for a right-going incident wave X;".
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In most of cases, we are interested in the whole scattering matrix
consisting of both Egs. (3.14) and (3.15). In this case, only the scattered
wave amplitudes, Xi and X;}; , 1, need to be computed and saved in
memory for the next computation, which reduces the computation
significantly. Furthermore, it enables the present method to efficiently
obtain solutions of practical scattering problems where a bottom is
composed of a large number of steps, and sufficient evanescent modes
are incorporated.

For m = 1, it can be readily shown that Eqgs. (3.12)-(3.15) reduce to
Eq. (3.9). It should be noted that the matrix size to be inverted in
Eq. (3.12) is N + 1, which is half the size of the matrix of the single
step. This makes the present method very effective in computation.
Besides the computational advantages, however, the present method
has additional flexibility compared to the method of subsystems used
by Guazzelli et al. (1992). In contrast to the previous method, it is
not necessarily limited to use the wide-spacing approximation between
the subsystems, nor is it affected by the choice of subdivision locations.
For each subsystem, the scattering matrix can be efficiently computed
as described above, which now plays a role of that from a single step.
Each subsystem is treated as a scatterer like with a single step. Repeat-
ing the same solution procedure in Egs. (3.12)-(3.15) gives the
scattered waves by a given topography, and they are expressed by
Egs. (3.14) and (3.15).

Neglecting the effect of evanescent modes, the solution of the plane
wave approximation is obtained from Eqs. (3.12)-(3.15) with N = 0.
For a given N > 1, however, we can have wide-spacing approximation,
hybrid wide-spacing approximation, or the full method. Scattered
waves for the wide-spacing approximation can be obtained by simply
taking elements for the propagation mode from all scattering matrices
of each step and using the same procedure above. Similarly, in the hy-
brid wide-spacing approximation, elements of the propagation mode
from all scattering matrices of every subsystem are used to obtain the
scattered waves. Therefore these solutions are approximations to the
full method.

4. Numerical results

To verify the present model, numerical results are compared to
existing laboratory data and previous results for a symmetric hump and
periodic bed profiles. For this purpose, we consider two-dimensional
scattering problems by plane wave incident on a given bedform h(x).
The varying profile is confined to a finite interval and connected to two
regions of constant depth.

A symmetric hump with width A on an otherwise flat bed was con-
sidered by Porter and Staziker (1995), which is given by:

h(x):ho{z(i)z—zi-vl}, 0<x<A 4.1)
As w?*\/g — 0, the topography becomes a thin barrier with height that is
half of the still water depth, ho. Chamberlain and Porter (2006) also pre-
sented numerical results for this problem using a multi-mode mild
slope approximation. Fig. 2 shows a comparison of the reflection coeffi-
cients for the problem plotted against the dimensionless width w?A/g.
The symbols are results from the method of Porter and Porter (2000),
which solves the full linear problem to any accuracy. This figure clearly
shows the accuracy of the present method, and it is evident that for
small values of w?\/g corresponding to steep slopes, a larger number
of evanescent modes are needed to obtain an accurate result. The
hump profile is approximated by 100 equally spaced steps. Both 10
and 50 evanescent modes are used for the computation. To reduce
round-off error, the double precision is used in all computations.

The sinusoidal bed considered by Davies and Heathershaw (1984) is
given by

h(x) = hy—bsin(lx), 0<x <2mn/I, (4.2)

0.25 -
04
024 AT R T
1 A h_'OB -
“ 0
0.15 -t . ;
K, 1 1 0 1 2
011 [ m=100 x/4
----- N=10
0.05 4 | —— N=50 =
+ + + Porter
0 T T T T T — T T ]

Fig. 2. Comparison of reflection coefficients for the hump topography.

where hg is the mean depth, n the number of sinusoidal bars, b the bar
amplitude, and I the bar wavenumber. The doubly sinusoidal bed used
by Guazzelli et al. (1992) is defined by

h(x) = hy—Db[sin(Ix) + sin(mlx)], 0 <x < 2mn/I, (4.3)
where m is the ratio of the larger and smaller bar wavelengths. Here,
each bar is taken as a subsystem, and the intervening adjacent bars
share a common shelf. The parameters of the sinusoidal beds in
Egs. (4.2) and (4.3) are listed in Table 2. An incident plane wave of
unit amplitude coming from x — — e is considered.

In order to check the accuracy of the results, convergence tests are
performed with increasing evanescent modes. Table 3 shows the results
for the “DH2” bed at resonance peaks corresponding to 2 k/l = 1 and 2.
To demonstrate the capability of the present method in handling a very
large system, we increase the numbers of steps and modes to 1600 and
200, respectively. For the case of a fixed number of steps, the sequence
of solutions converges to a value depending on the step number as the
mode number increases. When both the numbers of steps and modes
are increased, a convergent solution can eventually be obtained.

For the sinusoidal beds considered by Davies and Heathershaw
(1984), previous studies reported that second-order resonance occurs
near 2 k/l = 2 with a sizable magnitude (Chamberlain and Porter,
1995; O'Hare and Davies, 1993). However, the more accurate model
by Porter and Porter (2003) revealed very small reflection at the reso-
nance point. We will analyze it in detail at the end of this section.

Fig. 3 shows the computed reflection coefficients for the sinusoidal
beds in Table 2 with laboratory experiment data by Davies and
Heathershaw (1984). In order to examine the effect of both mode and
step numbers on the results, two settings are used in the computation.
The red dashed line indicates the result of 10 modes with 100 steps
per bar wavelength, and the solid line is for 50 modes with 400 steps.
The two lines are identical at this graph resolution, and it is clearly

Table 2
Parameters of bed configuration for periodic bars.
Bed type Case ho b 2m/l n m
(cm)
Sinusoidal DH1 15.6 5 100 2 -
DH2 156 5 100 4
DH3 312 5 100 10
Doubly sinusoidal Gla 25 1 12 4 2
Glc 4 1 12 4 2
G2a 25 0.5 6 4 1.5
G2c 4 0.5 6 4 1.5
G3a 25 1 6 4 1.5
G3c 4 1 6 4 1.5
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Table 3
Convergence tests with increasing evanescent modes for the DH2 bed form listed in
Table 2.

M N K M N K

steps  modes Wi=1 2kl=2 steps  modes Wi=1 2kl=2
100 0 0.74161 0.07987 400 0 0.74606  0.08167
1 0.74113  0.03805 1 0.74367  0.04132

10 0.73797  0.05420 10 0.74127  0.03760

30 0.73751 0.05391 30 0.74072  0.03967

50 0.73746  0.05410 50 0.74056  0.04008

100 0.73744  0.05415 100 0.74052  0.04005

200 073743  0.05417 200 0.74050  0.04005

800 0 0.74669  0.08180 1600 0 0.74700  0.08184
1 074399  0.04172 1 0.74413  0.04190

10 0.74151 0.03718 10 0.74159  0.03708

30 0.74113  0.03789 30 0.74125  0.03752

50 0.74100  0.03833 50 0.74117  0.03769

100 0.74088  0.03866 100 0.74108  0.03795

200 0.74086  0.03865 200 0.74102  0.03809

shown that the reflection coefficient is close to zero at a point near
2 k/l = 2. The bed slope of sinusoidal beds is small, so that even plane
wave approximation can give good results except near 2 k/l = 2
(O'Hare and Davies, 1993). As the number of bars increases, a slight
shift of the first-order resonance peak towards low frequency becomes
apparent.

Fig. 4 shows a comparison of the reflection coefficients for the dou-
bly sinusoidal beds considered by Guazzelli et al. (1992). All beds are
composed of four bars. In these beds, the ratio of sinusoidal bed compo-
nents m creates additional higher-order resonances referred to as
“difference resonance” near 2k/l = (m — 1) and “sum resonance” near
2k/l = (m + 1), as described by previous studies (Guazzelli et al.,

1992; O'Hare and Davies, 1993). For the beds of m = 1.5, a significant
amount of the difference resonance is detected, as shown in Fig. 4c-f.
In the computation, the same arrangements as before are used. When
the relative bar amplitude ratio defined by b/hy is large, the shift of res-
onance peaks is more apparent, as shown in Fig. 4a in comparison with
Fig. 4b. Another factor to affect the shift is the bed slope, which can be
seen in Fig. 4e against Fig. 4c.

The combined effect of more complicated bed shape and the steeper
slope reduces the accuracy of results in simple models, as shown in
Fig. 5. O'Hare and Davies (1993) analyzed the shortcoming due to the
exclusion of evanescent modes. In Fig. 4, both results show good agree-
ment with the experiment data, and the two lines are nearly identical
except for a few intervals showing slight discrepancy, which indicates
the combined effect of complicated bed shape and steep slope. Fig. 4a
is very close to Porter and Porter's (2003) figure 6 rather than
Athanassoulis and Belibassakis' (1999) figure 8.

Devillard et al. (1988) applied wide-spacing approximation under a
special condition where every horizontal shelf length is large compared
to the local wavelength above it. Later O'Hare and Davies (1992) showed
that when the ratio of each step height to the local water depth is less
than 0.02, the wide-spacing approximation of Devillard et al. can be sim-
plified to the plane wave approximation, and both produce close results
to the full model with evanescent modes for mild sinusoidal beds. To in-
vestigate the validity of the wide-spacing approximation as the number
of steps increases, numerical experiments are extended to steeper to-
pographies. Fig. 5 shows a comparison of the computed reflection coef-
ficients for three methods. Here, EFEM is referred to as the full model
incorporating evanescent modes, and both wide-spacing approximation
and plain wave approximation are considered. In the computation, the
evanescent modes are fixed to 50, but the number of steps is variable
to observe its effect on the reflection coefficient. Evidently, as the step
number increases, the results of both approximations become closer.
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Fig. 3. Comparison of reflection coefficients for sinusoidal topographies listed in Table 2. The red dashed line is the result for 10 evanescent modes with 100 steps per bar wavelength and
the solid line for 50 modes with 400 steps per bar wavelength (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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This implies that the merit of wide-spacing approximation diminishes
for a large system with a sufficient number of unknowns. However, it
should be noted that a large number of unknowns is a necessary condi-
tion to obtain an accurate solution. Once again, Fig. 5 shows that the full
EFEM has to be used for the correct prediction of wave scattering over a
steep topography.

As described before, the present method can be directly applied to a
finite number of subsystems, and scattering matrices of each subsystem
are obtained from those of individual steps in the subsystem. These
scattering matrices of the subsystem can be used to analyze the interac-
tion between bars of a given topography. To this end, we consider two
beds, “DH2” and “G1a”, and the mode number is fixed to N = 10. Each
bed has 4 bars, each of which is approximated by 100 steps. Fig. 6
shows the reflected wave amplitude, |p7 | in Eq. (2.6), from bars under
consideration, and an incident plane wave of unit amplitude comes
from x — — oo,

Fig. 6a shows reflection coefficients fzoim the §£St two bars. The ex-
tended scattering matrix of each bar, R; and T;, can be computed

from Egs. (3.14) and (3.15) by using those of individual steps in a bar.
Then, the scattering equation for bars is given similarly to Eq. (3.7) by

X7 =R X7 +T, X Xy

Xion =Ty X7 + Ry Xipy Xio | _ 5 s ]{ X; } (4.4)
X101 = ~R;X]+01 + T3 X301 X1+01 2 2\ X, )
Xa01 = T3X701 + Ry Xoon Xaom

From Eq. (4.4), the reflected wave amplitude vector X7 can be
expressed in terms of two incoming waves, X{ and X5¢;, towards the
bars. Solving the equation, we have

X = {ﬁt o1 (1R ﬁ;)“ﬁ;ﬁ}x; AT (1-RRY) TS X
(45)

The reflected wave +from the two bars for the incident wave X;~ has two
components. The R; component is a contribution from the first bar, and
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Fig. 5. Validity check for wide-spacing approximation as the number of steps increases. The bed configurations are listed in Table 2.

the other indicates multiple interactions between two bars. In Fig. 6a,
the solid black line denotes the reflection coefficients from the two
bars, the blue line with symbols is for the contribution of ﬁﬁ, and the
red one is for the interaction. The green line is the phase difference of
the two components. In the neighborhood of 2 k/I = 1, they are almost
in phase, and the reflection coefficient is reinforced. On the other hand,
near 2 k/l = 1.47, they are out of phase, which gives rise to very small
reflection. Second-order resonance occurs near 2 k/[ = 2, but the com-
puted reflection coefficient is close to zero. In Fig. 6a, it can be observed
that the two contributions are nearly in phase, but both amplitudes are
close to zero, which gives nearly zero reflection.

Similarly,iwe can compute the extended transfer matrix of the first
three bars S; from Eqs. (3.12)-(3.15). To compute the solution of the
four bars given, we finally have to use the above equations once again.
Then, the reflected wave amplitude vector X for the problem is up-
dated to

_ ~+ ~— ~ ~— _
Xy = (53,1 +834 51.7))(1+ + 831 S47X401 (4.6)
with
~ JOTPUIN P ~ N T
517 = (I—staa) RXS;& S47= (I—staa) Ty. (4.7)

From the given conditions of an incident wave, the second term
in Eq. (4.6) is now dropped out. Fig. 6b corresponds to the “DH2” bed
in Table 2. When an additional bar is added, the magnitude of the reso-
nance peaks is increased and the peak width becomes narrower.
The number of side lobes flanked by the main peak is also increasing,

as shown in the figure, which is largely caused by the phase difference
between two contributions. The magnitude due to interaction is
diminishing with increasing bar number, which in turn makes the
main peak magnitude increase slowly. Near 2 k/I = 2, the reflection co-
efficient and magnitude of both contributions become zero again. Now,
it is evident that this originated from a single bar and continuously car-
ried over. Accordingly, in all sinusoidal beds, a very small reflection is
detected near 2 k/l = 2.

Fig. 6d corresponds to a doubly sinusoidal bed “G1a”, and reflection
coefficients from its first two bars are shown in Fig. 6¢. Since the compo-
nent wavelength ratio of the bed is 2, both first-order and difference res-
onances occur at a value of 2 k/I = 1. Thus, it is difficult to discriminate
the two contributions separately. In comparison with Fig. 6a, Fig. 6¢
shows a more apparent shift of the first-order resonance peaks. This
shift also appears in the result of the single bar, indicated by the blue
line with symbols in Fig. 6c¢.

The model prediction for a doubly sinusoidal bed “G3a” is shown in
Fig. 6e and Fig. 6f. The ratio of larger and smaller component wave-
lengths in this bedform is given by 1.5, so additional higher-order reso-
nances occur at distinct values of 0.5 and 2.5 in contrast to the bed
“G1a”. Since bed “G3a” is more complex in shape and steeper, graphs
of both the reflection coefficient and phase difference look more compli-
cated, and the shift of the first-order resonance peaks is most significant.

5. Conclusions
A new transfer matrix incorporating evanescent modes is developed

to solve the two-dimensional linear wave scattering problem by varying
topography. When the matrix acts on the given incident waves, the full
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solution of the scattered wave field over a stepwise topography is ob-
tained. The transfer matrix is represented in terms of the scattering ma-
trices of individual steps, which enable the method to efficiently handle
practical problems of complicated bedforms. To obtain accurate solu-
tions, we increased the number of unknowns up to 643,200, in which
1600 steps were used with 200 evanescent modes. Tests of computing
time also demonstrated the surprisingly powerful capability of the pres-
ent method in reducing computing time compared to the conventional
method of direct inversion. Highly accurate solutions for periodic beds
are presented in comparison to previous studies (Chamberlain and
Porter, 1995; Guazzelli et al., 1992; O'Hare and Davies, 1993).
The present method can also be applied without modification to
smaller subsystems of steps, and the solution does not depend on the
choice of subdivision locations. Thus, it improves upon the method of
Guazzelli et al. (1992). Repeating the procedure for obtaining the scat-
tering matrix of a subsystem to the group of subsystems gives the scat-
tering properties of the whole bedform. This feature is used to examine
interaction between bars in periodic beds, in which changes of the reflec-
tion coefficient and its contributions with increasing number of bars are
illustrated. The shift of resonance peaks towards lower wavenumbers is
reassessed in terms of parameters such as the bar amplitude ratio to still-
water depth, the bed slope, and the complexity of the bed shape. For the

sinusoidal beds studied by Davies and Heathershaw (1984), very small
reflection near the location of second-order resonance is clarified, and
anearly zero reflection coefficient of a single bar at the point successively
affects a very small reflection of this type of periodic bed with multiple
bars. For a large system, numerical results of wide-spacing approxima-
tion are very close to those of plane wave approximation, and eventually

its merit disappears.
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1. Introduction

For a varying topography in which the change of depth within a
wavelength is appreciable, reflected waves can no longer be neglected,
as waves are scattered by the undulating bottom. This interaction be-
tween surface water waves and periodic bottom topographies has
been studied extensively. The main issue has been focused on the
Bragg resonance reflection of incident waves when the surface wave-
length is about twice the wavelength of the bed profile (Mei et al., 2005).

When the bottom is rapidly varying with steep slopes, the evanes-
cent modes must be included to predict wave scattering accurately.
These modes represent local effects, but through mode coupling, they
affect the propagating modes. The inclusion of evanescent modes
gives rise to an additional set of coupled equations, from which the ac-
curate higher-order Bragg resonances and the clear shift of Bragg peaks
towards lower wavenumbers are obtained (Guazzelli et al., 1992;
Mattioli, 1991).

The stepwise approximation, in which a varying bottom is approxi-
mated by a series of steps, has proved successful for wave scattering
problems. The solution of each region of constant depth in the approx-
imation can be expressed as an eigenfunction expansion. To determine
unknown coefficients in the expansion, matching conditions are used at
every boundary of the intervening shelves to ensure continuity of the
fluid velocity and pressure over the depth. For an accurate solution,
the number of both steps and evanescent modes should be increased
to a sufficient level. By increasing the number of unknowns, a more ac-
curate solution can be obtained, but large amounts of computational ef-
fort are also required. Since the simple direct inversion of a matrix uses a
large amount of memory as well, the conventional method is not suit-
able, especially for a large system of equations. In spite of several efforts

http://dx.doi.org/10.1016/j.coastaleng.2014.01.013
0378-3839 © 2014 The Author. Elsevier B.V. All rights reserved.

to overcome this difficulty, the limitation on increasing the number of
unknowns has still remained. Therefore, a new method is needed to al-
leviate the limitation appreciably.

Devillard et al. (1988) devised a transition matrix method based on
both the scattering matrix by Miles' (1967) variational approximation
and the wide-spacing approximation by Srokosz and Evans (1979).
The propagating modes on either side of a shelf are related to a 2 x 2
transition matrix expressed in analytical form. Then, the scattering
property is obtained by successive multiplication of the transition ma-
trices corresponding to each shelf. This idea was adopted by Evans
and Linton (1994) to find the scattering properties in a transformed
domain by a conformal mapping technique. O'Hare and Davies (1993)
applied the plane wave approximation, which is a simplified version
of the wide-spacing approximation, to predict the scattering of periodic
bedforms. Their model provides good predictions for sinusoidal beds,
but poor predictions for higher-order resonances of doubly sinusoidal
beds. This strongly implies the inclusion of evanescent modes in the
scattering of complicated topographies. Guazzelli et al. (1992) devel-
oped a hybrid wide-spacing approximation by subdividing a bed into
smaller subsystems of steps to enhance the ability of solving fairly
large linear systems with a reasonable amount of effort, although it
somewhat sacrifices the accuracy of the solution. Coupling between all
wave modes is taken into account in each subsystem, but the subsys-
tems are not coupled by the evanescent modes. Since the solution is af-
fected by the choice of subsystems, they indicated that an adequate
subdivision into subsystems must be selected. Rey et al. (1992) present-
ed both experimental and numerical results of the propagation of nor-
mally incident waves over a rectangular submerged bar using the fully
coupled model by Takano (1960) and Kirby and Dalrymple (1983)
and the approximate model by Devillard et al. (1988).
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Another line of approach to successfully predict linear wave scatter-
ing is based on the mild slope approximation. After Berkhoff (1972)
introduced the mild slope equation, several extensions have been
made aiming at steeper slopes and more complex bed shapes. The
extended mild slope equation by Kirby (1986) and the modified
mild slope equation by Chamberlain and Porter (1995) produced accu-
rate prediction for sinusoidal beds where the mild slope equation failed.
Massel (1993) and Porter and Staziker (1995) presented multi-mode
extensions to include additional evanescent modes to cope with steeper
slopes. Athanassoulis and Belibassakis (1999) and Chamberlain and
Porter (2006) showed that a sloping bed mode added to the multi-
mode extension improves the convergence rate of the approximation.

Recently, Bender and Dean (2003) applied the stepwise approxima-
tion to study wave scattering by 2-dimensional trenches and sills with
sloped transitions. They focused on the effects of sloped transition on
the wave scattering and found that the sloped transitions led to a reduc-
tion in the reflection coefficients. Their numerical results of the stepwise
approximation were compared favorably with those from other shallow
water models. In a numerical experiment, Bender and Dean (2003) used
at most 40 steps and 16 evanescent modes, while Guazzelli et al. (1992)
used 60 steps and at most 4 evanescent modes. Consequently, a limited
number of unknowns have been used in the approximation, and
solutions have been compared mainly to available laboratory data. For
better understanding of the stepwise approximation, the accuracy of
the solution has to be tested with increasing unknowns to a sufficient
level.

Since most of the computing time in the conventional method is
spent in inverting the matrix of linear equations, it is crucial to find an
effective way to use a number of smaller matrices to replace the one cor-
responding large matrix. To use the smallest matrix for the inversion,
our aim is to construct the solution by summing all scattering matrices
of individual steps. To this end, a transfer matrix is developed not only
to significantly relieve the limitation of the previous models, but also
to obtain the full solution of the two-dimensional linear wave scattering
problem without any restriction except for the stepwise approximation.
We present highly accurate numerical solutions for wave scattering by
variable topography and reassess the results. Extensive accuracy tests
of the solution are performed, and for multiple scattering between
bars, we examine changes in the reflection coefficient and its contribu-
tions with increasing number of bars in periodic beds.

2. Eigenfunction expansion method

For linear water waves with angular frequency o, we seek a complex
velocity potential ¢(x, z) exp(—iwt). A smooth bottom connecting two
regions of constant depth is approximated by M consecutive steps with
(M + 1) horizontal shelves. Although the length of the first and last
shelves may not be finite, the intervening shelves are of finite length.
For a better approximation to a given bed profile, the number of steps
should be increased.

Because the depth h; over the ith shelf (x; _ ; <x <x;) is constant, the
solution can be expressed by an eigenfunction expansion in the follow-
ing form:

¢ = (pi' e+ pr e ) coshkip(z +hy)

+> [sfje_k'*f(x_""‘) + s[je"‘-f("‘_x) cosk; j(z + hy), (2.1)
=

where the propagating mode amplitude pi~ and evanescent mode
amplitudes si; are to be determined, and the superscript + denotes
the wave propagation direction. k;; are the solutions of the dispersion
relationship.

0’ = gkio tanhk;oh; = —gk; ; tank; ;h;. (2.2)

The eigenfunctions are given by
fig = coshkig(z+hy), fin= coskj(z+hy), (2.3)

which form a complete and orthogonal set for the interval (— h;, 0).
To determine the unknown amplitudes in Eq. (2.1), the matching
conditions are imposed at each boundary separating adjacent regions.

{ b = dig
0d; 0y q;X=x;, —min(h;h; ;) <z<0. (2.4)
ox  Ox

For computational purposes, the infinite series in Eq. (2.1) is truncated
into a finite series of N terms. Substituting Eq. (2.1) into Eq. (2.4) pro-
duces a residual due to the truncation. Following the method of weight-
ed residuals by Kirby and Dalrymple (1983), we have 2 (N + 1) linear
algebraic equations from the matching conditions at x = x;.

X=X

0 0
/7}] d)if?.,jdz = /7}1 d’iﬂfis.,jdz

0 ad)i d _ 0 a¢i+1 d
/ etz [, Serrha

i+1

hs= min(h;, by ),

i

(2.5)

where ff; denotes an eigenfunction in the shallower shelf, and f} is that
in the deeper shelf. We make use of the shift of the integration limit in
the velocity condition using no contributions from the vertical wall of
the step.

Evaluation of the integrals in Eq. (2.5) gives a linear equation system.
In this study, the unknown vector X; is regrouped into two sub-vectors
of (N + 1) elements.

X T
Xi = |:X41r :|7 )<1i = {piiasi%l7w7st} . (26)

i+1
Then, the linear system can be written in matrix form as
AX;_; +BX;+CX;, =0, (2.7)

where matrices A;, B;, and C; have four sub-matrices of order (N + 1) el-
ements.

_ [0 A _[Biy1 Bip Gy O
Ai_[o 2 BBy Byt G7|c, o] (2.8)

For M steps and N evanescent modes, 2M(N + 1) linear equations
are formed. When the number of both steps and evanescent modes is
increased for an accurate solution, the number of equations to be solved
increases much more rapidly. To circumvent the difficulties in solving a
large system of equations, we present a new method in which the solu-
tion is built using the individual scattering matrices of each step. More
importantly, we demonstrate that the present method is another way
of exactly solving the scattering problem of a very large system of
equations. Table 1 shows the computed CPU times of both the conven-
tional direct inversion and the present method for two wave inputs. It is
evident that the present method drastically reduces the computing
time, especially for the case of a large number of unknowns, in which
the direct inversion method is impractical as shown.

After obtaining all velocity potential amplitudes, surface elevation
can be computed from the dynamic free surface condition. From the ve-
locity potential representation in Eq. (2.1), the reflection coefficient K
and transmission coefficient Ky are given by

p1 | _ |para | coshky1hpgs

Kp="PL1 Ky =
R pi] "= Ip{|  coshk;h,

(2.9)
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Table 1
Computed CPU times of conventional direct inversion and present method for two wave
inputs.

M steps N modes No. of unknowns CPU time (sec)
Direct inversion Present method
100 0 200 0.10 0.00
1 400 0.76 0.02
5 1200 32.57 0.03
10 2200 243.38 0.16
20 4200 1701.60 0.76
200 40,200 - 626.61

‘~’denotes no result.

3. Transfer and scattering matrices

In this section, we begin by finding the simplest solution for the scat-
tering problem of a single step and build up towards a more complicat-
ed one for a multi-step. As mentioned, we shall show how to construct
the transfer matrix of a multi-step using the pre-calculated scattering
matrices successively.

3.1. A single step

In previous studies, shelf lengths of a single step were assumed to be
infinite so that only the propagating modes of incident waves coming
from x — =+ e can be encountered around its depth discontinuity. How-
ever, we consider a more general case in which the shelf length can be
finite and incident waves including evanescent modes are given at the
both ends.

Combining the incident waves in Eq. (2.7) and transposing them, the
equation can be rewritten in the following form

B,X, =D, X, =X", (3.1)
with

B B A C
B, — | Bun 1,12} D :_{ 112 1‘11]: 32
1 {31.21 By | 1 Aip G| (3-2)

[N g Xt
o[ x5}

The elements in both B; and D; are computable from inner products
of the eigenfunction and weight function. As an example for h; < hy,

from the velocity matching condition (m = 1, -, N + 1), we have the el-
ements of the matrices B; and D;.

. 0
ik, ek / Jiofandz (n=1)
-

0
I<1.j[h frjfamdz (n=j+1),

bm‘” - P ik, o 0
_lkzvoe 2.0 1/ fzvofzvﬁdz (n _ N+ 2)/
_hZ
0
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e oition [° (3.3)
—ikjpe 1/11 frofamdz (n=1),
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s
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The pressure matching condition (m = N + 2, -, 2N + 2)
produces

—iky Xy 0 d _
e - fiofimdz (n=1),
0 1
[, fuifimdz m=j+1),

b,,= ) 0
mn _elkz.oxl [h fz_of]_mdz (n:N+2),

0 1
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0
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) 0
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0
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J—h,

e*kz jAX,

where j = 1, -, N. The shelf length is given by Ax; = x; — x; _ 1, (i
=1,2)and

- m—1,
| m—N-2,

It is evident from Egs. (3.3) and (3.4) that the evanescent modes are
coupled with the propagating modes. Particularly, the shelf length af-
fects the evanescent modes of the incident waves by exp(—k;;Ax;),
which eventually has an effect on the scattered waves. When the length
is large enough, all contributions of evanescent modes virtually vanish
in Xi". On the other hand, when the incident waves are exclusively
given by propagating modes as in the plane wave, the same result hap-
pens to X1, even though the shelf length is not long enough. Thus, for a
step of infinite shelf length, incident waves are equivalent to plane
waves.

By solving Eq. (3.1), the scattering matrix of a single step S; = [S1 S1']

is obtained.
_ + o + o " +
xlzs;lnlxlz[‘ﬁ TLHXL}E S11 S {Xl_}. (3.6)
T Ry J1X S12 Si2| Xz

The matrices Ri and Ti denote coefficients of the reflected and trans-
mitted waves, respectively. For a single step, the transfer matrix is inter-
changeable with the scattering matrix. We can see from Eq. (3.6) that
multiplying the transfer matrix by incident waves yields the solution
of scattered waves. Furthermore, the transfer matrix reflects the nature
of the system regarding topographic features and wave properties.
Since the scattering matrix exists even for a special step of equal
depth, where only the transmitted wave is formed, By ! always exists.
When 1 and 2 are replaced by i and i + 1, Eq. (3.6) gives the scattered
wave equations of the ith step.

When the solution X; of Eq. (3.6) is substituted into Eq. (2.1), it can
be observed that the produced evanescent modes decay exponentially
away from depth discontinuities. If a shelf length is so large that all ev-
anescent modes are negligibly attenuated inside the shelf, only the
propagating modes arrive at the neighboring step. Devillard et al.
(1988) adopted this wide-spacing approximation and applied it to
every step in a stepped bed to study Anderson localization to water
waves over a random bottom.

m<N+1

m>N+1 " (33)

3.2. Two steps

In a bed with two steps, a multiple scattering between the steps is
formed, which is absent in the case of a single step. Linear equations
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for two steps are directly obtained from Eq. (2.7), and they can be given
by the scattering matrix form of each step.

X7 =R{X] +T; X5 Xy
X =TiX] +R X, e o (x)

2 172 28 = 18 3.7
X2 :REX;+T2X3 = X%r [SZ Sz } X3 ( )
X5 =T3X; +R3 X5 X3

Here, the incident waves with amplitudes Xi” and X3 are given, and the
other amplitudes are to be determined. Similarly to a single step, the un-
knowns can be expressed by the transfer matrix, S, = [S3 S5 |, acting on
the incident waves. It is evident from Eq. (3.7) that each of them has
four sub-matrices of order (N + 1).

T S
S;=[Sa1 Siz Sis Sia| i Si =[S Sz S5 Sl (38)
By solving Eq. (3.7) straightforwardly, we find

Xy = (IFRERY ) 7 (RETIXT 4 T5X5) = S35XT + 855X,
X3 = (T7 + Ry S33) X7 + Ry S33X5 = S3,X{ +8,0X5

X} =T3SEoXT + (i85, + R3 X3 = SLaX] +83.X

Xi = (RU+T7S35)X] +T78,5X5 =S31X] +5,,1X;,

where I is the identity matrix of order (N + 1). The scattered waves
propagating away from a variable bottom profile are X;” and X3

By extending the argument of a long wave by Mei et al. (2005), the
physical features imbedded in Eq. (3.9) can be explained. For simplicity,
we examine a scattering process due to a right-going incident wave
only. When the incident wave of Xi~ arrives at the first step x = x4,
some of the wave energy with a wave T{ X{" is transmitted into the sec-
ond shelf, and the rest, R{ X7, is reflected. As soon as this transmitted
wave reaches the second step, it undergoes the same scattering process:
some energy T3 T X{ is transmitted to the third shelf and the rest,
RS T X7, is reflected back toward the first step. Upon reaching the
first step, the back-reflected wave is again split into reflected and trans-
mitted waves to produce Ry Ry T X and Ty RS Ti X', respectively. This
back-and-forth scattering process is repeated infinitely in the second
shelf, as shown in Fig. 1.

Summing up all of the left-going waves in the first shelf, we have

X7 =R7X] + T{R3TiX] + T{RIRTRSTX] + -
_ {Rf +T; (1-R3R; )’Hgﬁ}x*, (3.10)

where the Neumann series identity is used in the case of a linear matrix
RS R; with norm less than unity (Greenberg, 1978). Similarly, the other
scattered wave amplitudes can be obtained. When the response of the
left-going incident wave is included, it results in Eq. (3.9). It is now

h

T, RIRRIT AT « | > RIRGR IR T XY
T RIT X « | > RIRT AT
RiX; « |=2TX

- X

'y

evident that the mathematical solution in Eq. (3.9) is the sum of the in-
finite series produced by multiple scattering.

3.3. Multiple steps

Following the procedure in the previous subsection successively,
the scattered waves for a bedform of m steps can be easily obtained.
The transfer matrix of the first (m — 1) steps is known in the previous
computation, as is the scattering matrix of the mth step. Hence, this
can be essentially treated as a multiple scattering between two scat-
terers, with one being composed of the first (m — 1) steps and the
last one. Then, for a given m steps, linear algebraic equations can be
written as

X7 =Sp_11X1 +Sm—1.1Xm

+ - — X
X3 = S.m—l‘le+ +Sn—12Xm, Xlw
: X; N
X1 =Sh1am X +Smioms X = 1 %2 V_(st 7] { i }
+ _ ot v e - :
Xim = Sm—12m—2X1 + Sm—12m—2Xm> X ml
X =R0Xo + TpXoiq, Xt

X;H = TTHX:»VI + R;X;H'
(3.11)

As shown in Eq. (3.11), the unknown wave amplitudes are weakly
coupled because of the first (m — 1) steps, where waves in each shelf
are expressed in terms of X;” and Xj,. As soon as X;, is expressed by
the incident waves Xi” and X;, . 1, all elements of the first m — 1
steps in the transfer matrix are readily obtained. Solving the third and
second from the last in the simultaneous equations gives

_ R -1 _ -1 —
Xm = (I_Rmsm—llm—2> anS;—l.Zm—ZXT"‘(I_R;Sm—l.Zm—Z) TmeH

—cr + - -
=Snam—1X1 +Smam—1Xmi1-

(3.12)

Substituting X, into the equations, the first 2(m — 1) elements of the
transfer matrix are obtained.

Sr;,i = 51;71,1' + SI;f],iS;,mel? Smi=Sm-1iSnam—1 (i=1,2m=2).
(3.13)

The left-going scattered wave amplitude is given from Eq. (3.13) by

X0 = (Snoit +Sn11Smam 1 )X +Sn 11Smam Xt (314)

Using X;;; computed from Eq. (3.13), the right-going scattered wave am-
plitude becomes

X;;H»l = ’ITnS;L,meZXl+ + (TJrrnSr;,mel + R:n)xr;+1 = S;‘mezr + S;‘merEJrl-

(3.15)
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Fig. 1. Multiple scattering with evanescent modes in a bed of two steps for a right-going incident wave X;".
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In most of cases, we are interested in the whole scattering matrix
consisting of both Egs. (3.14) and (3.15). In this case, only the scattered
wave amplitudes, Xi and X;}; , 1, need to be computed and saved in
memory for the next computation, which reduces the computation
significantly. Furthermore, it enables the present method to efficiently
obtain solutions of practical scattering problems where a bottom is
composed of a large number of steps, and sufficient evanescent modes
are incorporated.

For m = 1, it can be readily shown that Eqgs. (3.12)-(3.15) reduce to
Eq. (3.9). It should be noted that the matrix size to be inverted in
Eq. (3.12) is N + 1, which is half the size of the matrix of the single
step. This makes the present method very effective in computation.
Besides the computational advantages, however, the present method
has additional flexibility compared to the method of subsystems used
by Guazzelli et al. (1992). In contrast to the previous method, it is
not necessarily limited to use the wide-spacing approximation between
the subsystems, nor is it affected by the choice of subdivision locations.
For each subsystem, the scattering matrix can be efficiently computed
as described above, which now plays a role of that from a single step.
Each subsystem is treated as a scatterer like with a single step. Repeat-
ing the same solution procedure in Egs. (3.12)-(3.15) gives the
scattered waves by a given topography, and they are expressed by
Egs. (3.14) and (3.15).

Neglecting the effect of evanescent modes, the solution of the plane
wave approximation is obtained from Eqs. (3.12)-(3.15) with N = 0.
For a given N > 1, however, we can have wide-spacing approximation,
hybrid wide-spacing approximation, or the full method. Scattered
waves for the wide-spacing approximation can be obtained by simply
taking elements for the propagation mode from all scattering matrices
of each step and using the same procedure above. Similarly, in the hy-
brid wide-spacing approximation, elements of the propagation mode
from all scattering matrices of every subsystem are used to obtain the
scattered waves. Therefore these solutions are approximations to the
full method.

4. Numerical results

To verify the present model, numerical results are compared to
existing laboratory data and previous results for a symmetric hump and
periodic bed profiles. For this purpose, we consider two-dimensional
scattering problems by plane wave incident on a given bedform h(x).
The varying profile is confined to a finite interval and connected to two
regions of constant depth.

A symmetric hump with width A on an otherwise flat bed was con-
sidered by Porter and Staziker (1995), which is given by:

h(x):ho{z(i)z—zi-vl}, 0<x<A 4.1)
As w?*\/g — 0, the topography becomes a thin barrier with height that is
half of the still water depth, ho. Chamberlain and Porter (2006) also pre-
sented numerical results for this problem using a multi-mode mild
slope approximation. Fig. 2 shows a comparison of the reflection coeffi-
cients for the problem plotted against the dimensionless width w?A/g.
The symbols are results from the method of Porter and Porter (2000),
which solves the full linear problem to any accuracy. This figure clearly
shows the accuracy of the present method, and it is evident that for
small values of w?\/g corresponding to steep slopes, a larger number
of evanescent modes are needed to obtain an accurate result. The
hump profile is approximated by 100 equally spaced steps. Both 10
and 50 evanescent modes are used for the computation. To reduce
round-off error, the double precision is used in all computations.

The sinusoidal bed considered by Davies and Heathershaw (1984) is
given by

h(x) = hy—bsin(lx), 0<x <2mn/I, (4.2)

0.25 -
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Fig. 2. Comparison of reflection coefficients for the hump topography.

where hg is the mean depth, n the number of sinusoidal bars, b the bar
amplitude, and I the bar wavenumber. The doubly sinusoidal bed used
by Guazzelli et al. (1992) is defined by

h(x) = hy—Db[sin(Ix) + sin(mlx)], 0 <x < 2mn/I, (4.3)
where m is the ratio of the larger and smaller bar wavelengths. Here,
each bar is taken as a subsystem, and the intervening adjacent bars
share a common shelf. The parameters of the sinusoidal beds in
Egs. (4.2) and (4.3) are listed in Table 2. An incident plane wave of
unit amplitude coming from x — — e is considered.

In order to check the accuracy of the results, convergence tests are
performed with increasing evanescent modes. Table 3 shows the results
for the “DH2” bed at resonance peaks corresponding to 2 k/l = 1 and 2.
To demonstrate the capability of the present method in handling a very
large system, we increase the numbers of steps and modes to 1600 and
200, respectively. For the case of a fixed number of steps, the sequence
of solutions converges to a value depending on the step number as the
mode number increases. When both the numbers of steps and modes
are increased, a convergent solution can eventually be obtained.

For the sinusoidal beds considered by Davies and Heathershaw
(1984), previous studies reported that second-order resonance occurs
near 2 k/l = 2 with a sizable magnitude (Chamberlain and Porter,
1995; O'Hare and Davies, 1993). However, the more accurate model
by Porter and Porter (2003) revealed very small reflection at the reso-
nance point. We will analyze it in detail at the end of this section.

Fig. 3 shows the computed reflection coefficients for the sinusoidal
beds in Table 2 with laboratory experiment data by Davies and
Heathershaw (1984). In order to examine the effect of both mode and
step numbers on the results, two settings are used in the computation.
The red dashed line indicates the result of 10 modes with 100 steps
per bar wavelength, and the solid line is for 50 modes with 400 steps.
The two lines are identical at this graph resolution, and it is clearly

Table 2
Parameters of bed configuration for periodic bars.
Bed type Case ho b 2m/l n m
(cm)
Sinusoidal DH1 15.6 5 100 2 -
DH2 156 5 100 4
DH3 312 5 100 10
Doubly sinusoidal Gla 25 1 12 4 2
Glc 4 1 12 4 2
G2a 25 0.5 6 4 1.5
G2c 4 0.5 6 4 1.5
G3a 25 1 6 4 1.5
G3c 4 1 6 4 1.5
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Table 3
Convergence tests with increasing evanescent modes for the DH2 bed form listed in
Table 2.

M N K M N K

steps  modes Wi=1 2kl=2 steps  modes Wi=1 2kl=2
100 0 0.74161 0.07987 400 0 0.74606  0.08167
1 0.74113  0.03805 1 0.74367  0.04132

10 0.73797  0.05420 10 0.74127  0.03760

30 0.73751 0.05391 30 0.74072  0.03967

50 0.73746  0.05410 50 0.74056  0.04008

100 0.73744  0.05415 100 0.74052  0.04005

200 073743  0.05417 200 0.74050  0.04005

800 0 0.74669  0.08180 1600 0 0.74700  0.08184
1 074399  0.04172 1 0.74413  0.04190

10 0.74151 0.03718 10 0.74159  0.03708

30 0.74113  0.03789 30 0.74125  0.03752

50 0.74100  0.03833 50 0.74117  0.03769

100 0.74088  0.03866 100 0.74108  0.03795

200 0.74086  0.03865 200 0.74102  0.03809

shown that the reflection coefficient is close to zero at a point near
2 k/l = 2. The bed slope of sinusoidal beds is small, so that even plane
wave approximation can give good results except near 2 k/l = 2
(O'Hare and Davies, 1993). As the number of bars increases, a slight
shift of the first-order resonance peak towards low frequency becomes
apparent.

Fig. 4 shows a comparison of the reflection coefficients for the dou-
bly sinusoidal beds considered by Guazzelli et al. (1992). All beds are
composed of four bars. In these beds, the ratio of sinusoidal bed compo-
nents m creates additional higher-order resonances referred to as
“difference resonance” near 2k/l = (m — 1) and “sum resonance” near
2k/l = (m + 1), as described by previous studies (Guazzelli et al.,

1992; O'Hare and Davies, 1993). For the beds of m = 1.5, a significant
amount of the difference resonance is detected, as shown in Fig. 4c-f.
In the computation, the same arrangements as before are used. When
the relative bar amplitude ratio defined by b/hy is large, the shift of res-
onance peaks is more apparent, as shown in Fig. 4a in comparison with
Fig. 4b. Another factor to affect the shift is the bed slope, which can be
seen in Fig. 4e against Fig. 4c.

The combined effect of more complicated bed shape and the steeper
slope reduces the accuracy of results in simple models, as shown in
Fig. 5. O'Hare and Davies (1993) analyzed the shortcoming due to the
exclusion of evanescent modes. In Fig. 4, both results show good agree-
ment with the experiment data, and the two lines are nearly identical
except for a few intervals showing slight discrepancy, which indicates
the combined effect of complicated bed shape and steep slope. Fig. 4a
is very close to Porter and Porter's (2003) figure 6 rather than
Athanassoulis and Belibassakis' (1999) figure 8.

Devillard et al. (1988) applied wide-spacing approximation under a
special condition where every horizontal shelf length is large compared
to the local wavelength above it. Later O'Hare and Davies (1992) showed
that when the ratio of each step height to the local water depth is less
than 0.02, the wide-spacing approximation of Devillard et al. can be sim-
plified to the plane wave approximation, and both produce close results
to the full model with evanescent modes for mild sinusoidal beds. To in-
vestigate the validity of the wide-spacing approximation as the number
of steps increases, numerical experiments are extended to steeper to-
pographies. Fig. 5 shows a comparison of the computed reflection coef-
ficients for three methods. Here, EFEM is referred to as the full model
incorporating evanescent modes, and both wide-spacing approximation
and plain wave approximation are considered. In the computation, the
evanescent modes are fixed to 50, but the number of steps is variable
to observe its effect on the reflection coefficient. Evidently, as the step
number increases, the results of both approximations become closer.
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Fig. 3. Comparison of reflection coefficients for sinusoidal topographies listed in Table 2. The red dashed line is the result for 10 evanescent modes with 100 steps per bar wavelength and
the solid line for 50 modes with 400 steps per bar wavelength (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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This implies that the merit of wide-spacing approximation diminishes
for a large system with a sufficient number of unknowns. However, it
should be noted that a large number of unknowns is a necessary condi-
tion to obtain an accurate solution. Once again, Fig. 5 shows that the full
EFEM has to be used for the correct prediction of wave scattering over a
steep topography.

As described before, the present method can be directly applied to a
finite number of subsystems, and scattering matrices of each subsystem
are obtained from those of individual steps in the subsystem. These
scattering matrices of the subsystem can be used to analyze the interac-
tion between bars of a given topography. To this end, we consider two
beds, “DH2” and “G1a”, and the mode number is fixed to N = 10. Each
bed has 4 bars, each of which is approximated by 100 steps. Fig. 6
shows the reflected wave amplitude, |p7 | in Eq. (2.6), from bars under
consideration, and an incident plane wave of unit amplitude comes
from x — — oo,

Fig. 6a shows reflection coefficients fzoim the §£St two bars. The ex-
tended scattering matrix of each bar, R; and T;, can be computed

from Egs. (3.14) and (3.15) by using those of individual steps in a bar.
Then, the scattering equation for bars is given similarly to Eq. (3.7) by

X7 =R X7 +T, X Xy

Xion =Ty X7 + Ry Xipy Xio | _ 5 s ]{ X; } (4.4)
X101 = ~R;X]+01 + T3 X301 X1+01 2 2\ X, )
Xa01 = T3X701 + Ry Xoon Xaom

From Eq. (4.4), the reflected wave amplitude vector X7 can be
expressed in terms of two incoming waves, X{ and X5¢;, towards the
bars. Solving the equation, we have

X = {ﬁt o1 (1R ﬁ;)“ﬁ;ﬁ}x; AT (1-RRY) TS X
(45)

The reflected wave +from the two bars for the incident wave X;~ has two
components. The R; component is a contribution from the first bar, and


image of Fig.�4

40 S.-N. Seo / Coastal Engineering 88 (2014) 33-42

| —— EFEM; —— PA;

o ~a) DH2 (M = 1600, N = 50)

0.6 —
Kz 0.4 —
0.2 —

0 _

¢) G1a (M = 1600, N = 50)

-
0.5 1 1.5 2 25

----- ws |
b) DH2 (M=196,N=50) .
- 0.6
- 04
- 0.2
: -0
0.5 1 15 2 25

d) G1a (M= 196, N = 50)

i

1
0.8 ﬂ
0.6
Ky
04 /\
0.2
0 e
0 1 2 3 4

IMI
0 1

2k/1

Fig. 5. Validity check for wide-spacing approximation as the number of steps increases. The bed configurations are listed in Table 2.

the other indicates multiple interactions between two bars. In Fig. 6a,
the solid black line denotes the reflection coefficients from the two
bars, the blue line with symbols is for the contribution of ﬁﬁ, and the
red one is for the interaction. The green line is the phase difference of
the two components. In the neighborhood of 2 k/I = 1, they are almost
in phase, and the reflection coefficient is reinforced. On the other hand,
near 2 k/l = 1.47, they are out of phase, which gives rise to very small
reflection. Second-order resonance occurs near 2 k/[ = 2, but the com-
puted reflection coefficient is close to zero. In Fig. 6a, it can be observed
that the two contributions are nearly in phase, but both amplitudes are
close to zero, which gives nearly zero reflection.

Similarly,iwe can compute the extended transfer matrix of the first
three bars S; from Eqs. (3.12)-(3.15). To compute the solution of the
four bars given, we finally have to use the above equations once again.
Then, the reflected wave amplitude vector X for the problem is up-
dated to

_ ~+ ~— ~ ~— _
Xy = (53,1 +834 51.7))(1+ + 831 S47X401 (4.6)
with
~ JOTPUIN P ~ N T
517 = (I—staa) RXS;& S47= (I—staa) Ty. (4.7)

From the given conditions of an incident wave, the second term
in Eq. (4.6) is now dropped out. Fig. 6b corresponds to the “DH2” bed
in Table 2. When an additional bar is added, the magnitude of the reso-
nance peaks is increased and the peak width becomes narrower.
The number of side lobes flanked by the main peak is also increasing,

as shown in the figure, which is largely caused by the phase difference
between two contributions. The magnitude due to interaction is
diminishing with increasing bar number, which in turn makes the
main peak magnitude increase slowly. Near 2 k/I = 2, the reflection co-
efficient and magnitude of both contributions become zero again. Now,
it is evident that this originated from a single bar and continuously car-
ried over. Accordingly, in all sinusoidal beds, a very small reflection is
detected near 2 k/l = 2.

Fig. 6d corresponds to a doubly sinusoidal bed “G1a”, and reflection
coefficients from its first two bars are shown in Fig. 6¢. Since the compo-
nent wavelength ratio of the bed is 2, both first-order and difference res-
onances occur at a value of 2 k/I = 1. Thus, it is difficult to discriminate
the two contributions separately. In comparison with Fig. 6a, Fig. 6¢
shows a more apparent shift of the first-order resonance peaks. This
shift also appears in the result of the single bar, indicated by the blue
line with symbols in Fig. 6c¢.

The model prediction for a doubly sinusoidal bed “G3a” is shown in
Fig. 6e and Fig. 6f. The ratio of larger and smaller component wave-
lengths in this bedform is given by 1.5, so additional higher-order reso-
nances occur at distinct values of 0.5 and 2.5 in contrast to the bed
“G1a”. Since bed “G3a” is more complex in shape and steeper, graphs
of both the reflection coefficient and phase difference look more compli-
cated, and the shift of the first-order resonance peaks is most significant.

5. Conclusions
A new transfer matrix incorporating evanescent modes is developed

to solve the two-dimensional linear wave scattering problem by varying
topography. When the matrix acts on the given incident waves, the full
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solution of the scattered wave field over a stepwise topography is ob-
tained. The transfer matrix is represented in terms of the scattering ma-
trices of individual steps, which enable the method to efficiently handle
practical problems of complicated bedforms. To obtain accurate solu-
tions, we increased the number of unknowns up to 643,200, in which
1600 steps were used with 200 evanescent modes. Tests of computing
time also demonstrated the surprisingly powerful capability of the pres-
ent method in reducing computing time compared to the conventional
method of direct inversion. Highly accurate solutions for periodic beds
are presented in comparison to previous studies (Chamberlain and
Porter, 1995; Guazzelli et al., 1992; O'Hare and Davies, 1993).
The present method can also be applied without modification to
smaller subsystems of steps, and the solution does not depend on the
choice of subdivision locations. Thus, it improves upon the method of
Guazzelli et al. (1992). Repeating the procedure for obtaining the scat-
tering matrix of a subsystem to the group of subsystems gives the scat-
tering properties of the whole bedform. This feature is used to examine
interaction between bars in periodic beds, in which changes of the reflec-
tion coefficient and its contributions with increasing number of bars are
illustrated. The shift of resonance peaks towards lower wavenumbers is
reassessed in terms of parameters such as the bar amplitude ratio to still-
water depth, the bed slope, and the complexity of the bed shape. For the

sinusoidal beds studied by Davies and Heathershaw (1984), very small
reflection near the location of second-order resonance is clarified, and
anearly zero reflection coefficient of a single bar at the point successively
affects a very small reflection of this type of periodic bed with multiple
bars. For a large system, numerical results of wide-spacing approxima-
tion are very close to those of plane wave approximation, and eventually

its merit disappears.
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